Skip to main content
Log in

Bessel-Fourier moment-based robust image zero-watermarking

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Aiming to resist various signal processing operations and geometric transformations, this paper proposes a robust zero-watermarking algorithm based on a new image moment called Bessel-Fourier moment. First, image normalization is used for the invariance of translation and scaling, then the magnitudes of Bessel-Fourier moments of normalized image are computed, which have rotation invariance and are used to construct the feature image regarded as watermarking. Experimental results and analyses show that the proposed method has strong robustness to various attacks, such as blurring, JPEG compression, Gaussian noise, rotation, scaling, Stirmark and print_photocopy_scan. Compared to the congener zero-watermarking schemes and Zernike moment, the developed method has better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Akhaee MA, Sahraeian S, Marvasti F (2010) Contourlet-based image watermarking using optimum detector in a noisy environment. IEEE Trans Image Process 19(4):967–980

    Article  MathSciNet  Google Scholar 

  2. Amos DE (1986) A portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans Math Softw 12(3):265–273

    Article  MATH  MathSciNet  Google Scholar 

  3. Chang CC, Lin PY (2008) Adaptive watermark mechanism for rightful ownership protection. J Syst Softw 81(7):1118–1129

    Article  Google Scholar 

  4. Chen TH, Horng G, Lee WB (2005) A publicly verifiable copyright proving scheme resistant to malicious attacks. IEEE Trans Ind Electron 52(1):327–334

    Article  Google Scholar 

  5. Coatrieux G, Guillou CL, Cauvin JM (2009) Reversible watermarking for knowledge digest embedding and reliability control in medical image. IEEE Trans Inf Technol Biomed 13(2):158–165

    Article  Google Scholar 

  6. Cui LH, Li WG (2011) Adaptive multiwavelet-based watermarking through JPW masking. IEEE Trans Image Process 20(4):1047–1060

    Article  MathSciNet  Google Scholar 

  7. Dong P, Brankov JG, Galatsanos NP, Yang Y, Davoine F (2005) Digita watermarking robust to geometric distortions. IEEE Trans Image Process 14(12):2140–2150

    Article  Google Scholar 

  8. Fan L, Gao TG, Yang QT (2010) A novel zero-watermark copyright authentication scheme based on lifting wavelet and Harris corner detection. Wuhan Univ J Nat Sci 15(5):408–414

    Article  MathSciNet  Google Scholar 

  9. Feng GR, Qian ZX, Dai NJ (2012) Reversible watermarking via extreme learning machine prediction. Neurocomputing 82(4):62–68

    Article  Google Scholar 

  10. Gao GY (2013) Composite chaos-based lossless image authentication and tamper localization. Multimed Tools Appl 63(3):947–964

    Article  Google Scholar 

  11. Nasir I, Weng Y, Jiang JM, Ipson S (2010) Multiple spatial watermarking technique in color images. SIViP 4(2):145–154

    Article  MATH  Google Scholar 

  12. Rawat S, Raman B (2012) A blind watermarking algorithm based on fractional Fourier transform and visual cryptography. Signal Process 92(6):1480–1491

    Article  Google Scholar 

  13. Sheng Y, Shen L (1994) Orthogonal Fourier–Mellin moments for invariant pattern recognition. J Opt Soc Am 11(6):1748–1757

    Article  Google Scholar 

  14. Stankovic S, Djurovic I, Pitas I (2001) Watermarking in the space/spatial-frequency domain using two-dimensional radon-wigner distribution. IEEE Trans Image Process 10(4):650–658

    Article  MATH  Google Scholar 

  15. Stankovic S, Orovic I, Chabert M, Mobasseri B (2013) Image watermarking based on the space/spatial-frequency analysis and hermite functions expansion. J Electron Imaging 22(1):013014

    Article  Google Scholar 

  16. Stankovic S, Orovic I, Zaric N (2010) An application of multidimensional time-frequency analysis as a base for the unified watermarking approach. IEEE Trans Image Process 1(3):736–745

    Article  MathSciNet  Google Scholar 

  17. Stankovic S, Orovic I, Zaric N, Ioana C (2010) Two dimensional time-frequency analysis based eigenvalue decomposition applied to image watermarking. Multimed Tools Appl 49(3):529–543

    Article  Google Scholar 

  18. Teague M (1980) Image analysis via the general theory of moments. J Opt Soc Am 70(8):920–930

    Article  MathSciNet  Google Scholar 

  19. Tsai HH, Tseng HC, Lai YS (2010) Robust lossless image watermarking based on α-trimmed mean algorithm and support vector machine. J Syst Softw 83(6):1015–1028

    Article  Google Scholar 

  20. Wen Q, Sun T, Wang S (2003) Concept and application of zero-watermark. Acta Electron Sin 31(2):214–216

    Google Scholar 

  21. Xiao B, Ma JF, Wang X (2010) Image analysis by Bessel–Fourier moments. Pattern Recognit 43(8):2620–2629

    Article  MATH  Google Scholar 

  22. Yang L, Chen Q, Tian J, Wu D (2012) Robust track-and-trace video watermarking. Secur Commun Netw 5(4):353–363

    Article  Google Scholar 

  23. Zhang WY, Frank YS (2011) Semi-fragile spatial watermarking based on local binary pattern operators. Opt Commun 286(16):3904–3912

    Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (Grant No. 61362032, 61374180), the Six Projects Sponsoring Talent Summits of Jiangsu Province, China (Grant No. SJ209006), the Research Fund for the Doctoral Program of Higher Education of China(20103223110003), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010526), the Natural Science Foundation of Educational Commission of Jiangxi Province, China (Grant No. GJJ12614, GJJ13716), the Natural Science Foundation of Jiangxi Province, China (Grant No. 20132BAB211025) and the Humanity and Social Science Youth foundation of Ministry of Education,China (Grant No. 13YJC870007).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangyong Gao or Guoping Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, G., Jiang, G. Bessel-Fourier moment-based robust image zero-watermarking. Multimed Tools Appl 74, 841–858 (2015). https://doi.org/10.1007/s11042-013-1701-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1701-8

Keywords

Navigation