Skip to main content
Log in

Demystifying the design of mobile augmented reality applications

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This research proposes a set of interaction design principles for the development of mobile augmented reality (MAR) applications. The design recommendations adopt a user-centered perspective and, thus, they focus on the necessary actions to ensure high-quality MAR user experiences. To formulate our propositions we relied on theoretical grounding and an evaluation of eight MAR applications that provide published records of their design properties. The design principles have then been applied to guide the development of a MAR travel application. We performed a field study with 33 tourists in order to elicit whether our design choices effectively lead to enhanced satisfaction and overall user experience. Results suggest that the proposed principles contribute to ensuring high usability and performance of the MAR application as well as evoking positive feelings during user and system interactions. Our prescriptions may be employed either as a guide during the initial stages of the design process (ex-ante usage) or as a benchmark to assess the performance (ex-post usage) of MAR applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abowd GD, Mynatt ED (2000) Charting past, present, and future research in ubiquitous computing. ACM Trans Comput-Hum Interact 7(1):29–58. doi:10.1145/344949.344988

    Article  Google Scholar 

  2. Anacleto R, Luz N, Figueiredo L (2010) Personalized sightseeing tours support using mobile devices. In: Forbrig P, Paternó F, Mark Pejtersen A (eds) Human-computer interaction, vol 332. IFIP advances in information and communication technology. Springer, Berlin Heidelberg, pp 301–304. doi:10.1007/978-3-642-15231-3_35

    Google Scholar 

  3. Anastassova M, Megard C, Burkhardt J-M (2007) Prototype evaluation and user-needs analysis in the early design of emerging technologies. In: Jacko J (ed) Human-computer interaction. Interaction design and usability, vol 4550. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 383–392. doi:10.1007/978-3-540-73105-4_42

    Google Scholar 

  4. Arvanitis T, Petrou A, Knight J, Savas S, Sotiriou S, Gargalakos M, Gialouri E (2009) Human factors and qualitative pedagogical evaluation of a mobile augmented reality system for science education used by learners with physical disabilities. Pers Ubiquit Comput 13(3):243–250. doi:10.1007/s00779-007-0187-7

    Article  Google Scholar 

  5. Arvanitis TN, Williams DD, Knight JF, Baber C, Gargalakos M, Sotiriou S, Bogner FX (2011) A human factors study of technology acceptance of a prototype mobile augmented reality system for science education. Adv Sci Lett 4(11–12):3342–3352. doi:10.1166/asl.2011.2044

    Article  Google Scholar 

  6. Aryan A, Singh S (2010) Securing location privacy in Augmented Reality. In: Industrial and Information Systems (ICIIS), 2010 International Conference on, July 29 2010-Aug. 1 2010, pp 172–176. doi:10.1109/ICIINFS.2010.5578714

  7. Azuma R, Baillot Y, Behringer R, Feiner S, Julier S, MacIntyre B (2001) Recent advances in augmented reality. IEEE Comput Graph Appl 21(6):34–47. doi:10.1109/38.963459

    Article  Google Scholar 

  8. Baldauf M, Lasinger K, Fr P, #246, hlich (2012) Private public screens: detached multi-user interaction with large displays through mobile augmented reality. Paper presented at the Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia, Ulm, Germany

  9. Balduini M, Celino I, Dell’Aglio D, Della Valle E, Huang Y, Lee T, Kim S-H, Tresp V (2012) BOTTARI: an augmented reality mobile application to deliver personalized and location-based recommendations by continuous analysis of social media streams. Web Semant Sci Serv Agents World Wide Web 16:33–41. doi:10.1016/j.websem.2012.06.004

    Article  Google Scholar 

  10. Biocca F, Lamas D, Gai P, Brady R (2001) Mapping the semantic asymmetries of virtual and augmented reality space. In: Beynon M, Nehaniv C, Dautenhahn K (eds) Cognitive technology: instruments of mind, vol 2117. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 117–122. doi:10.1007/3-540-44617-6_11

    Google Scholar 

  11. Bolter JD, Engberg M, MacIntyre B (2013) Media studies, mobile augmented reality, and interaction design. Interactions 20(1):36–45. doi:10.1145/2405716.2405726

    Article  Google Scholar 

  12. Bordallo López M, Hannuksela J, Silvén O, Vehviläinen M (2012) Interactive multi-frame reconstruction for mobile devices. Multimed Tools Appl 1–21. doi:10.1007/s11042-012-1252-4

  13. Carmigniani J, Furht B, Anisetti M, Ceravolo P, Damiani E, Ivkovic M (2011) Augmented reality technologies, systems and applications. Multimed Tools Appl 51(1):341–377. doi:10.1007/s11042-010-0660-6

    Article  Google Scholar 

  14. Dahne P, Karigiannis JN (2002) Archeoguide: system architecture of a mobile outdoor augmented reality system. In: Mixed and augmented reality, 2002. ISMAR 2002. Proceedings. International Symposium on, 2002, pp 263–264 doi:10.1109/ismar.2002.1115103

  15. Dix A, Rodden T, Davies N, Trevor J, Friday A, Palfreyman K (2000) Exploiting space and location as a design framework for interactive mobile systems. ACM Trans Comput-Hum Interact 7(3):285–321. doi:10.1145/355324.355325

    Article  Google Scholar 

  16. Dubois E, Nigay L (2000) Augmented reality: Which augmentation for which reality? In: Designing augmented reality environments. DARE’00, New York, NY, USA, ACM, pp 165–166

  17. Dünser A, Grasset R, Seichter H, Billinghurst M (2007) Applying HCI principles to AR systems design. In: 2nd International Workshop at the IEEE Virtual Reality. Charlotte, NC, USA, pp 37–42

  18. Emmanouilidis C, Koutsiamanis R-A, Tasidou A (2013) Mobile guides: taxonomy of architectures, context awareness, technologies and applications. J Netw Comput Appl 36(1):103–125. doi:10.1016/j.jnca.2012.04.007

    Article  Google Scholar 

  19. Gammeter S, Gassmann A, Bossard L, Quack T, Van Gool L (2010) Server-side object recognition and client-side object tracking for mobile augmented reality. In: Computer vision and pattern recognition workshops (CVPRW), 2010 I.E. Computer Society Conference on, 13–18 June 2010, pp 1–8 doi:10.1109/CVPRW.2010.5543248

  20. Ganapathy S (2013) Design guidelines for mobile augmented reality: user experience. In: Huang W, Alem L, Livingston MA (eds) Human factors in augmented reality environments. Springer, New York, pp 165–180

    Chapter  Google Scholar 

  21. Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G Mobile recommender systems in tourism. J Netw Comput Appl (0). doi:10.1016/j.jnca.2013.04.006

  22. Gonzalez-Sanchez J, Conley Q, Chavez-Echeagaray M-E, Atkinson RK (2012) Supporting the assembly process by leveraging augmented reality, cloud computing, and mobile devices. IGI Global. doi:10.4018/ijcbpl.2012070107

    MATH  Google Scholar 

  23. Hagbi N, Bergig O, El-Sana J, Billinghurst M (2011) Shape recognition and pose estimation for mobile augmented reality. IEEE Trans Vis Comput Graph 17(10):1369–1379. doi:10.1109/tvcg.2010.241

    Article  Google Scholar 

  24. Haugstvedt AC, Krogstie J (2012) Mobile augmented reality for cultural heritage: A technology acceptance study. In: Mixed and augmented reality (ISMAR), 2012 I.E. International Symposium on, 5–8 Nov. 2012, pp 247–255 doi:10.1109/ISMAR.2012.6402563

  25. Hollerer T, Feiner S (2004) Mobile augmented reality. In: Karimi H, Hammad A (eds) Telegeoinformatics: Location-based computing and services. Taylor & Francis, pp 221–262

  26. Hürst W, Wezel C (2013) Gesture-based interaction via finger tracking for mobile augmented reality. Multimed Tools Appl 62(1):233–258. doi:10.1007/s11042-011-0983-y

    Article  Google Scholar 

  27. Kalkofen D, Mendez E, Schmalstieg D (2007) Interactive focus and context visualization for augmented reality. Paper presented at the Proceedings of the 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality

  28. Karpischek S, Marforio C, Godenzi M, Heuel S, Michahelles F (2009) Mobile augmented reality to identify mountains. In: 3rd European Conference on Ambient Intelligence (AmI-09), Salzburg, Austria

  29. Keil J, Zoellner M, Engelke T, Wientapper F, Schmitt M (2013) Controlling and filtering information density with spatial interaction techniques via handheld augmented reality. In: Shumaker R (ed) Virtual augmented and mixed reality. Designing and developing augmented and virtual environments, vol 8021. Lecture notes in computer science. Springer, Berlin Heidelberg, pp 49–57. doi:10.1007/978-3-642-39405-8_6

    Chapter  Google Scholar 

  30. Kim MJ (2013) A framework for context immersion in mobile augmented reality. Autom Constr 33:79–85. doi:10.1016/j.autcon.2012.10.020

    Article  Google Scholar 

  31. Klopfer E, Squire K (2008) Environmental detectives—the development of an augmented reality platform for environmental simulations. Education Tech Research Dev 56(2):203–228. doi:10.1007/s11423-007-9037-6

    Article  Google Scholar 

  32. Ko SM, Chang WS, Ji YG (2013) Usability principles for augmented reality applications in a smartphone environment. Int J Hum-Comput Interact 29(8):501–515. doi:10.1080/10447318.2012.722466

    Article  Google Scholar 

  33. Krevelen DWF, Poelman R (2010) A survey of augmented reality technologies, applications and limitations. Int J Virtual Reality 9(2):1–20

    Google Scholar 

  34. Langlotz T, Mooslechner S, Zollmann S, Degendorfer C, Reitmayr G, Schmalstieg D (2012) Sketching up the world: in situ authoring for mobile augmented reality. Pers Ubiquit Comput 16(6):623–630. doi:10.1007/s00779-011-0430-0

    Article  Google Scholar 

  35. Lee JY, Seo DW, Rhee GW (2011) Tangible authoring of 3D virtual scenes in dynamic augmented reality environment. Comput Ind 62(1):107–119. doi:10.1016/j.compind.2010.07.003

    Article  MATH  Google Scholar 

  36. Linaza MT, Marimon D, Carrasco P, Alvarez R, Montesa J, Aguilar S, Diez G (2012) Evaluation of mobile augmented reality applications for tourism destinations. In: Fuchs M, Ricci F, Cantoni L (eds) Information and communication technologies in tourism 2012. Springer, Vienna, pp 260–271. doi:10.1007/978-3-7091-1142-0_23

    Chapter  Google Scholar 

  37. Liu C, Huot S, Diehl J, Mackay W, Beaudouin-Lafon M (2012) Evaluating the benefits of real-time feedback in mobile augmented reality with hand-held devices. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, Texas, USA

  38. Mehrabian A, Russell JA (1974) An approach to environmental psychology. MIT Press, Cambridge

    Google Scholar 

  39. Milgram P, Takemura H, Utsumi A, Kishino F (1995) Augmented reality: a class of displays on the reality - virtuality continuum. In: SPIE Conference on Telemanipulator and Telepresence Technologies, pp 282–292

  40. Nilsson EG (2009) Design patterns for user interface for mobile applications. Adv Eng Softw 40(12):1318–1328. doi:10.1016/j.advengsoft.2009.01.017

    Article  Google Scholar 

  41. Oh S, Byun Y-C (2012) A user-adaptive augmented reality system in mobile computing environment. In: Lee R (ed) Software and network engineering, vol 413. Studies in computational intelligence. Springer, Berlin Heidelberg, pp 41–53. doi:10.1007/978-3-642-28670-4_4

    Google Scholar 

  42. Oinas-Kukkonen H, Kurkela V (2003) Developing successful mobile applications. In: International Conference on Computer Science and Technology (IASTED). Cancun, Mexico, pp 50–54

  43. Olsson T (2013) Concepts and subjective measures for evaluating user experience of mobile augmented reality services. In: Huang W, Alem L, Livingston MA (eds) Human factors in augmented reality environments. Springer, New York, pp 203–232

    Chapter  Google Scholar 

  44. Olsson T, Kärkkäinen T, Lagerstam E, Ventä-Olkkonen L (2012) User evaluation of mobile augmented reality scenarios. J Ambient Intell Smart Environ 4(1):29–47. doi:10.3233/ais-2011-0127

    Google Scholar 

  45. Olsson T, Lagerstam E, Karkkainen T, Vaananen-Vainio-Mattila K (2013) Expected user experience of mobile augmented reality services: a user study in the context of shopping centres. Pers Ubiquit Comput 17(2):287–304. doi:10.1007/s00779-011-0494-x

    Article  Google Scholar 

  46. Papakonstantinou S, Brujic-Okretic V (2009) Framework for context-aware smartphone applications. Vis Comput 25(12):1121–1132

    Article  Google Scholar 

  47. Pappas I, Giannakos M, Kourouthanassis P, Chrissikopoulos V (2013) Assessing emotions related to privacy and trust in personalized services. In: Douligeris C, Polemi N, Karantjias A, Lamersdorf W (eds) Collaborative, trusted and privacy-aware e/m-services, vol 399. IFIP advances in information and communication technology. Springer, Berlin Heidelberg, pp 38–49. doi:10.1007/978-3-642-37437-1_4

    Google Scholar 

  48. Piekarski W, Thomas B (2002) ARQuake: the outdoor augmented reality gaming system. Commun ACM 45(1):36–38. doi:10.1145/502269.502291

    Article  Google Scholar 

  49. Qian X, Yang Y, Gong Y (2011) The art of metaphor: a method for interface design based on mental models. Paper presented at the Proceedings of the 10th International Conference on Virtual Reality Continuum and Its Applications in Industry, Hong Kong, China

  50. Ray B, Han R (2012) SecureWear: A framework for securing mobile social networks. In: Meghanathan N, Chaki N, Nagamalai D (eds) Advances in computer science and information technology. Computer science and engineering, vol 85. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering. Springer, Berlin Heidelberg, pp 515–524. doi:10.1007/978-3-642-27308-7_55

    Google Scholar 

  51. Rosenblum L, Feiner S, Julier S, Swan JE II, Livingston M (2012) The development of mobile augmented reality. In: Dill J, Earnshaw R, Kasik D, Vince J, Wong PC (eds) Expanding the frontiers of visual analytics and visualization. Springer, London, pp 431–448. doi:10.1007/978-1-4471-2804-5_24

    Chapter  Google Scholar 

  52. Sa Md, Churchill E (2012) Mobile augmented reality: exploring design and prototyping techniques. Paper presented at the Proceedings of the 14th international conference on Human-computer interaction with mobile devices and services, San Francisco, California, USA

  53. Sá M, Churchill E (2013) Mobile augmented reality: A design perspective. In: Huang W, Alem L, Livingston MA (eds) Human factors in augmented reality environments. Springer, New York, pp 139–164

    Google Scholar 

  54. Sadeh N, Hong J, Cranor L, Fette I, Kelley P, Prabaker M, Rao J (2009) Understanding and capturing people's privacy policies in a mobile social networking application. Pers Ubiquit Comput 13(6):401–412. doi:10.1007/s00779-008-0214-3

    Article  Google Scholar 

  55. Savio N, Braiterman J (2007) Design sketch: the context of mobile interaction. In: Mobile HCI, pp 284–286

  56. Shokri R, Freudiger J, Hubaux JP (2010) A unified framework for location privacy. In: In Proceedings of the 9th International Symposium on Privacy Enhancing Technologies, pp 203–214

  57. Sigg S, Schuermann D, Ji Y (2012) PINtext: A framework for secure communication based on context. In: Puiatti A, Gu T (eds) Mobile and ubiquitous systems: Computing, networking, and services, vol 104. Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering. Springer, Berlin Heidelberg, pp 314–325. doi:10.1007/978-3-642-30973-1_31

    Google Scholar 

  58. Venkatesh V, Thong JYL, Xu X (2012) Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Q 36(1):157–178

    Google Scholar 

  59. Verbelen T, Stevens T, Simoens P, De Turck F, Dhoedt B (2011) Dynamic deployment and quality adaptation for mobile augmented reality applications. J Syst Softw 84(11):1871–1882. doi:10.1016/j.jss.2011.06.063

    Article  Google Scholar 

  60. Vlahakis V, Ioannidis M, Karigiannis J, Tsotros M, Gounaris M, Stricker D, Gleue T, Daehne P, Almeida L (2002) Archeoguide: an augmented reality guide for archaeological sites. IEEE Comput Graph Appl 22(5):52–60. doi:10.1109/mcg.2002.1028726

    Article  Google Scholar 

  61. Walls JG, Widmeyer GR, El Sawy OA (1992) Building an information system design theory for vigilant EIS. Inf Syst Res 3(1):36–59. doi:10.1287/isre.3.1.36

    Article  Google Scholar 

  62. Wei C, Wang CN, Ramnath R, Ramanathan J (2012) Examining the practical challenges of an augmented reality cyber-infrastructure framework. Paper presented at the Proceedings of the 27th Annual ACM Symposium on Applied Computing, Trento, Italy

  63. World Tourism Organization (2007) Handbook on tourism market segmentation - maximising marketing effectiveness. World Tourism Organization, Madris

    Google Scholar 

  64. Zhu W, Owen CB (2008) Design of the PromoPad: an automated augmented-reality shopping assistant. IGI Global. doi:10.4018/joeuc.2008070103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panos E. Kourouthanassis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kourouthanassis, P.E., Boletsis, C. & Lekakos, G. Demystifying the design of mobile augmented reality applications. Multimed Tools Appl 74, 1045–1066 (2015). https://doi.org/10.1007/s11042-013-1710-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1710-7

Keywords

Navigation