Skip to main content
Log in

3D CAD solid model retrieval based on region segmentation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

3D shape retrieval may find the existing models as reference for design reuse. 3D segmentation decomposes models into new elements with large granularity and salient shapes to replace the faces in a solid model. In this way, it may reduce the complexity of a CAD model and make a local salient shape more prominent. Therefore, a retrieval method for 3D CAD solid models based on region segmentation is proposed in this paper. To deal with the problems of poor efficiency and uncertain results, a three-step segmentation method for CAD solid models is introduced. First, face adjacency graph (FAG) descriptions for query models and data models are created from their B-rep models. Second, the FAGs are segmented into a set of convex, concave and planar regions, and the relations among the regions are represented with a region graph. Finally, the sub-graphs are combined recursively to form optimal region sub-graphs with respect to an objective function through an optimal procedure. To avoid using complex graph matching or sub-graph matching for model shape comparison, region property codes are introduced to represent face regions in a CAD model. The similarity between the two compared models is evaluated by comparing their region property codes. The experiments show that the proposed method supports 3D CAD solid model retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Agathos A, Pratikakis I, Perantonis S et al (2007) 3D mesh segmentation methodologies for CAD applications. Comput-Aided Des Appl 4(6):827–841

    Google Scholar 

  2. Bai J, Gao S, Tang W et al (2010) Design reuse oriented partial retrieval of CAD models. Comput Aided Des 42(12):1069–1084

    Article  Google Scholar 

  3. Bespalov D, Regli W, Shokoufandeha A (2006) Local feature extraction and matching partial objects. Comput Aided Des 38(9):1020–1037

    Article  MATH  Google Scholar 

  4. Biasotti S, Giorgi D, Spagnuolo M et al (2006) Sub-part correspondence by structural descriptors of 3D shapes. Comput Aided Des 38(9):1002–1019

    Article  Google Scholar 

  5. Biasotti S, Giorgi D, Spagnuolo M et al (2008) Size functions for comparing 3D models. Pattern Recogn 41(9):2855–2873

    Article  MATH  Google Scholar 

  6. Bronstein AM, Bronstein MM, Guibas LJ, Ovsjanikov M (2011) Shape Google: geometric words and expressions for invariant shape retrieval. ACM Trans Graph 30(1):1.1–1.22

    Article  Google Scholar 

  7. Buchele SF, Crawford RH (2004) Three-dimensional halfspace constructive solid geometry tree construction from implicit boundary representations. Comput Aided Des 36(11):1063–1073

    Article  Google Scholar 

  8. Cardone A, Gupta SK, Deshmukh A, Karnik M (2006) Machining feature-based similarity assessment algorithms for prismatic machined parts. Comput Aided Des 38(9):954–972

    Article  Google Scholar 

  9. Cardone A, Gupta SK, Karnik M (2003) A survey of shape similarity assessment algorithms for product design and manufacturing applications. J Comput Formation Sci Eng 3(2):109–118

    Article  Google Scholar 

  10. Chu CH, Hsu YC (2006) Similarity assessment of 3D mechanical components for design reuse. Robot Comput Integr Manuf 22(4):332–341

    Article  MathSciNet  Google Scholar 

  11. Daras P, Axenopoulos A (2010) A 3D shape retrieval framework supporting multimodal queries. Int J Comput Vis 89:229–247

    Article  Google Scholar 

  12. El-Mehalawi M, Allen MR (2003) A database system of mechanical components based on geometric and topological similarity, Part I: representation. Comput Aided Des 35(1):95–105

    Article  Google Scholar 

  13. Fu MW, Ong SK, Lu WF et al (2003) An approach to identify design and manufacturing features from a data exchanged part model. Comput Aided Des 35(11):979–993

    Article  Google Scholar 

  14. Funkhouser T, Kazhdan M, Shilane P et al (2004) Modeling by example. ACM Trans Graph 23(3):649–660

    Article  Google Scholar 

  15. Gadh R, Prinz FB (1992) Recognition of geometric forms using the differential depth filter. Comput Aided Des 24(11):583–598

    Article  MATH  Google Scholar 

  16. Gal R, Cohen-Or D (2006) Salient geometric features for partial shape matching and similarity. ACM Trans Graph 25(1):130–150

    Article  Google Scholar 

  17. Gao Y, Dai Q, Zhang N (2010) 3D model comparison using spatial structure circular descriptor. Pattern Recogn 43(3):1142–1151

    Article  MATH  Google Scholar 

  18. Gao S, Shah JJ (1998) Automatic recognition of interacting machining features based on minimal condition sub-graph. Comput Aided Des 30(9):727–739

    Article  MATH  Google Scholar 

  19. Jing W, Peng W (2014) Intrinsic local features for 3D CAD retrieval using bag-of-features. J Comput Inf Syst 10(11):4511–4518

    Google Scholar 

  20. Kazhdan M, Funkhouser T, Rusinkiewicz S (2003) Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proceedings of the Eurographics Symposium on Geometry Processing

  21. Li M, Zhang YF, Fuh JYH et al (2009) Toward effective mechanical design reuse: CAD model retrieval based on general and partial shapes. ASME J Mech Des 131(12):121501.1–121501.8

    Article  Google Scholar 

  22. Liu ZB, Bu SH, Zhou K et al (2013) A survey on partial retrieval of 3D shapes. J Comput Sci Technol 28(5):836–851

    Article  Google Scholar 

  23. Lu Y, Gadh R, Tautges TJ (2001) Feature based hex meshing methodology: feature recognition and volume decomposition. Comput Aided Des 33(3):221–232

    Article  Google Scholar 

  24. Ma L, Huang Z, Wang Y (2010) Automatic discovery of common design structures in CAD models. Comput Graph 34(5):545–555

    Article  Google Scholar 

  25. Ma LJ, Huang ZD, Wu QS (2009) Extracting common design patterns from a set of solid models. Comput Aided Des 41(12):952–970

    Article  Google Scholar 

  26. Misher F, Hanrahan P (2010) Context-based search for 3D models. ACM Trans Graph 29(6):182.1–182.10

    Google Scholar 

  27. Misic M, Stojcetovic B (2014) 3D mesh segmentation for CAD applications. Center for Quality

  28. Novotni M, Klein R (2004) Shape retrieval using 3D Zernike descriptors. Comput Aided Des 36(11):1047–1062

    Article  Google Scholar 

  29. Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph 21(4):807–832

    Article  MathSciNet  MATH  Google Scholar 

  30. Saber E, Xu Y, Tekalp AM (2005) Partial shape recognition by sub-matrix matching for partial matching guided image labeling. Pattern Recogn 38(10):1560–1573

    Article  Google Scholar 

  31. Sakurai H, Dave P (1996) Volume decomposition and feature recognition, Part II: curved objects. Comput Aided Des 28(6–7):519–537

    Article  Google Scholar 

  32. Savelonas MA, Pratikakis I, Sfikas K (2014) An overview of partial 3D object retrieval methodologies. Multimed Tools Appl. doi:10.1007/s11042-014-2267-9

    Google Scholar 

  33. Shah J, Shen Y, Shirur A (1994) Determination of machining volumes from extensible sets of design features. In: Shah J, Mantyla M, Nau D (eds) Adavances in feature based manufacturing. pp. 129–157

  34. Shamir A (2008) A survey on mesh segmentation techniques. Comput Graphics Forum 27(6):1539–1556

    Article  MATH  Google Scholar 

  35. Sonthi R, Kun jur G, Gad HR (1997) Shape feature determination using the curvature region representation. Proceedings of the 4th Symposium on Solid Modeling and Applications Atlanta. pp. 285–296

  36. Tao SQ, Huang ZD, Zuo BQ et al (2012) Partial retrieval of CAD models based on the gradient flows in Lie group. Pattern Recogn 45(4):1721–1738

    Article  MATH  Google Scholar 

  37. Woo Y, Sakurai H (2002) Recognition of maximal features by volume decomposition. Comput Aided Des 34(3):195–207

    Article  Google Scholar 

  38. Zhang J, Xu Z, Li Y et al (2013) Generic face adjacency graph for automatic common design structure discovery in assembly models. Comput Aided Des 45(8):1138–1151

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the National Natural Science Foundation of China (No.51275182) and the Provincial Key Technologies R & D Program of Qinghai (Grants: 2011-G-A5A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuting Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, S., Wang, S. & Chen, A. 3D CAD solid model retrieval based on region segmentation. Multimed Tools Appl 76, 103–121 (2017). https://doi.org/10.1007/s11042-015-3033-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-3033-3

Keywords

Navigation