Skip to main content
Log in

High accuracy block-matching sub-pixel motion estimation through detection of error surface minima

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The present paper focuses on high-accuracy block-based sub-pixel motion estimation utilizing a straightforward error minimization approach. In particular, the mathematics of bilinear interpolation are utilized for the selection of the candidate motion vectors that minimize the error criterion, by estimating local minima in the error surface with arbitrary accuracy. The implemented approach favors optimum accuracy over computational load demands, making it ideal as a benchmark for faster methods to compare against; however, it is not best suited to real-time critical applications (i.e. video compression). Other video processing needs relying on motion vectors and requiring high-resolution/accuracy can also take advantage of the proposed solution (and its simplified nature in terms of underlying theoretical complexity), such as motion-compensation filtering for super resolution image enhancement, motion analysis in sensitive areas (e.g. high-speed video monitoring, medical imaging, motion analysis in sport science, big-data visual surveillance, etc.). The proposed method is thoroughly evaluated using both real video and synthetic motion sequences from still images, adopting well-tested block-based motion estimation evaluation procedures. Assessment includes comparisons to a number of existing block-based methods with respect to PSNR and SSIM metrics over ground-truth samples. The conducted evaluation takes into consideration both the original (arbitrary-accuracy) and the truncated motion vectors (after rounding them to the nearest half, quarter, or eighth of a pixel), where superior performance with more accurate motion vector estimation is revealed. In this context, the degree to which sub-pixel motion estimation methods actually produce sub-pixel motion vectors is investigated, and the implications thereof are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdou IE (1998) Practical approach to the registration of multiple frames of video images. In: Electronic Imaging'99. International Society for Optics and Photonics, pp 371–382. doi:10.1117/12.334685

  2. Argyriou V, Vlachos T (2003) Sub-pixel motion estimation using gradient cross-correlation. In: Signal Processing and Its Applications. Proceedings. Seventh International Symposium on, Jul. 2003. IEEE, pp 215–218. doi:10.1109/ISSPA.2003.1224852

  3. Argyriou V, Vlachos T (2004) Using gradient correlation for sub-pixel motion estimation of video sequences. In: Acoustics, Speech, and Signal Processing. Proceedings.(ICASSP'04). IEEE International Conference on, May 2004. IEEE, pp iii-329-332 vol 323. doi:10.1109/ICASSP.2004.1326548

  4. Argyriou V, Vlachos T (2005) Performance study of gradient correlation for sub-pixel motion estimation in the frequency domain. IEE Proceedings-Vision, Image and Signal Processing 152(1):107–114. doi:10.1049/ip-vis:20051073

    Article  Google Scholar 

  5. Argyriou V, Vlachos T A (2006) Study of sub-pixel motion estimation using phase correlation. In: BMVC. Citeseer, pp 387–396

  6. Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77. doi:10.1007/BF01420984

    Article  Google Scholar 

  7. Bovik AC (2010) Handbook of image and video processing. Academic press

  8. Brehm M, Paysan P, Oelhafen M, Kachelrieß M (2013) Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT. Med Phys 40(10):101913. doi:10.1118/1.4820537

    Article  Google Scholar 

  9. Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: European conference on computer vision. Springer, pp 25–36. doi:10.1007/978-3-540-24673-2_3

  10. Chen Z (2009) Efficient block matching algorithm for motion estimation. International Journal of Signal Processing 5(2):133–137

    Google Scholar 

  11. Cheng F-H, Sun S-N (1999) New fast and efficient two-step search algorithm for block motion estimation. Circuits and Systems for Video Technology, IEEE Transactions on 9(7):977–983. doi:10.1109/76.795049

    Article  Google Scholar 

  12. Chi YM, Tran TD Etienne-Cummings R (2007) Optical flow approximation of sub-pixel accurate block matching for video coding. In: Acoustics, Speech and Signal Processing. ICASSP 2007. IEEE International Conference on, Apr. 2007. IEEE, pp I-1017-I-1020. doi:10.1109/ICASSP.2007.366083

  13. Chi YM, Tran TD, Etienne-Cummings R (2007) Optical flow approximation of sub-pixel accurate block matching for video coding. In: 2007 I.E. International Conference on Acoustics, Speech and Signal Processing-ICASSP'07. IEEE, pp I-1017-I-1020. doi:10.1109/ICASSP.2007.366083

  14. Davis CQ, Karul Z, Freeman DM (1995) Equivalence of subpixel motion estimators based on optical flow and block matching. In: Computer Vision, Proceedings., International Symposium on, Nov 1995. IEEE, pp 7–12. doi:10.1109/ISCV.1995.476969

  15. Dimoulas C, Avdelidis K, Kalliris G, Papanikolaou G (2008) Joint wavelet video denoising and motion activity detection in multimodal human activity analysis: application to video-assisted bioacoustic/psychophysiological monitoring. EURASIP Journal on Advances in Signal Processing 2008:34. doi:10.1155/2008/792028

    MATH  Google Scholar 

  16. Dimoulas CA, Kalliris GM, Chatzara EG, Tsipas NK, Papanikolaou GV (2014) Audiovisual production, restoration-archiving and content management methods to preserve local tradition and folkloric heritage. J Cult Herit 15(3):234–241. doi:10.1016/j.culher.2013.05.003

    Article  Google Scholar 

  17. Dufaux F, Moscheni F (1995) Motion estimation techniques for digital TV: a review and a new contribution. Proc IEEE 83(6):858–876. doi:10.1109/5.387089

    Article  Google Scholar 

  18. Faires JD, Burden R (2002) Numerical methods. 3rd edn. Brooks Cole

  19. Foroosh H, Zerubia JB, Berthod M (2002) Extension of phase correlation to subpixel registration. Image Processing, IEEE Transactions on 11(3):188–200. doi:10.1109/83.988953

    Article  Google Scholar 

  20. Hoge WS (2003) A subspace identification extension to the phase correlation method [MRI application]. Medical Imaging, IEEE Transactions on 22(2):277–280. doi:10.1109/TMI.2002.808359

    Article  Google Scholar 

  21. Hu J, Luo Y (2015) Noise-robust video super-resolution using an adaptive spatial-temporal filter. Multimedia Tools and Applications 74(21):9259–9278. doi:10.1007/s11042-014-2079-y

    Article  Google Scholar 

  22. Jeong J (2003) Fast sub-pixel motion estimation having lower complexity. In: Consumer Electronics. ICCE. 2003 I.E. International Conference on, Jun. 2003. IEEE, pp 174–175. doi:10.1109/ICCE.2003.1218867

  23. Keren D, Peleg S, Brada R (1988) Image sequence enhancement using sub-pixel displacements. In: Computer Vision and Pattern Recognition. Proceedings CVPR'88., Computer Society Conference on, Jun. 1988. IEEE, pp 742–746. doi:10.1109/CVPR.1988.196317

  24. Kwon DN, Agathoklis P, Driessen P (2005) Sub-pixel accuracy motion estimation using linear approximate model of the error criterion function. In: Communications, Computers and signal Processing. PACRIM. 2005 I.E. Pacific Rim Conference on, Aug. 2005. IEEE, pp 261–264. doi:10.1109/PACRIM.2005.1517275

  25. Larson R, Edwards BH (2010) Calculus. Brooks/Cole

  26. Lee VR (2015) Combining high-speed cameras and stop-motion animation software to support students’ modeling of human body movement. J Sci Educ Technol 24(2–3):178–191. doi:10.1007/s10956-014-9521-9

    Article  Google Scholar 

  27. Li X, Gonzales C (1996) A locally quadratic model of the motion estimation error criterion function and its application to subpixel interpolations. Circuits and Systems for Video Technology, IEEE Transactions on 6(1):118–122. doi:10.1109/76.486427

    Article  Google Scholar 

  28. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: IJCAI, pp 674–679

  29. Magarey JF, Kingsbury NG (1996) Motion estimation using complex wavelets. In: SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics, pp 674–685. doi:10.1117/12.255276

  30. Marti-Puig P, Rodríguez S, De Paz JF, Reig-Bolaño R, Rubio MP, Bajo J (2012) Stereo video surveillance multi-agent system: new solutions for human motion analysis. Journal of Mathematical Imaging and Vision 42(2–3):176–195. doi:10.1007/s10851-011-0290-2

    Article  MATH  Google Scholar 

  31. Ng AC, Zeng B (1998) A new fast motion estimation algorithm based on search window sub-sampling and object boundary pixel block matching. In: Image Processing. ICIP 98. Proceedings. 1998 International Conference on, Oct. 1998. IEEE, pp 605–608. doi:10.1109/ICIP.1998.727336

  32. Ouji K, Ardabilian M, Chen L, Ghorbel F (2013) 3D deformable super-resolution for multi-camera 3D face scanning. Journal of mathematical imaging and vision 47(1–2):124–137. doi:10.1007/s10851-012-0399-y

    Article  Google Scholar 

  33. Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: a technical overview. Signal Processing Magazine, IEEE 20(3):21–36. doi:10.1109/MSP.2003.1203207

    Article  Google Scholar 

  34. Porto M, Cristani C, Dall’Oglio P, Grellert M, Mattos J, Bampi S, Agostini L (2013) Iterative random search: a new local minima resistant algorithm for motion estimation in high-definition videos. Multimedia tools and applications 63(1):107–127. doi:10.1007/s11042-012-1033-0

    Article  Google Scholar 

  35. Ren J, Jiang J, Vlachos T (2010) High-accuracy sub-pixel motion estimation from noisy images in Fourier domain. Image Processing, IEEE Transactions on 19(5):1379–1384. doi:10.1109/TIP.2009.2039056

    Article  MathSciNet  MATH  Google Scholar 

  36. Sayed M, Badawy W, Jullien G (2009) Low-complexity algorithm for fractional-pixel motion estimation. In: Image Processing (ICIP) 16th IEEE International Conference on, Nov. 2009. IEEE, pp 1565–1568. doi:10.1109/ICIP.2009.5414600

  37. Scharcanski J, Schardosim L, Santos D, Stuchi A (2013) Motion detection and compensation in infrared retinal image sequences. Comput Med Imaging Graph 37(5):377–385. doi:10.1016/j.compmedimag.2013.06.004

    Article  Google Scholar 

  38. Schultz RR, Meng L, Stevenson RL (1998) Subpixel motion estimation for super-resolution image sequence enhancement. J Vis Commun Image Represent 9(1):38–50. doi:10.1006/jvci.1997.0370

    Article  Google Scholar 

  39. Shekarforoush H, Berthod M, Zerubia J (1996) Subpixel image registration by estimating the polyphase decomposition of cross power spectrum. In: Computer Vision and Pattern Recognition. Proceedings CVPR'96, 1996 I.E. Computer Society Conference on, 1996. IEEE, pp 532–537. doi:10.1109/CVPR.1996.517123

  40. Steel K, Ellem E, Baxter D (2015) The application of biological motion research: biometrics, sport, and the military. Psychon Bull Rev 22(1):78–87. doi:10.3758/s13423-014-0659-5

    Article  Google Scholar 

  41. Stone HS, Orchard MT, Chang E-C, Martucci SA (2001) A fast direct Fourier-based algorithm for subpixel registration of images. Geoscience and Remote Sensing, IEEE Transactions on 39(10):2235–2243. doi:10.1109/36.957286

    Article  Google Scholar 

  42. Strang G (2006) Linear algebra and its applications. Thomson Brooks/Cole

  43. Suh JW, Jeong J (2004) Fast sub-pixel motion estimation techniques having lower computational complexity. Consumer Electronics, IEEE Transactions on 50(3):968–973. doi:10.1109/TCE.2004.1341708

    Article  Google Scholar 

  44. Suh J, Cho J, Jeong J (2009) Model-based quarter-pixel motion estimation with low computational complexity. Electron Lett 45(12):618–620. doi:10.1049/el.2009.3632

    Article  Google Scholar 

  45. Tian Q, Huhns MN (1986) Algorithms for subpixel registration. Computer Vision, Graphics, and Image Processing 35(2):220–233. doi:10.1016/0734-189X(86)90028-9

    Article  Google Scholar 

  46. Trocan M, Mikovicova B, Zhanguzin D (2012) An adaptive motion-compensated approach for video deinterlacing. Multimedia Tools and Applications 61(3):819–837. doi:10.1007/s11042-011-0845-7

    Article  Google Scholar 

  47. Tsai R, Huang TS (1984) Multiframe image restoration and registration. Advances in computer vision and Image Processing 1(2):317–339

    Google Scholar 

  48. Vegiris CE, Avdelidis K, Dimoulas C, Papanikolaou G (2009) Live broadcasting of high definition audiovisual content using HDTV over broadband IP networks. International Journal of Digital Multimedia Broadcasting 2008. doi:10.1155/2008/250654

  49. Wang Y, Ostermann J, Zhang Y-Q (2002) Video processing and communications, vol 5. Prentice Hall Upper Saddle River

  50. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):1. doi:10.1109/TIP.2003.819861

    Article  Google Scholar 

  51. Wong H-M, Au OC, Chang A (2005) Fast sub-pixel inter-prediction-based on texture direction analysis (FSIP-BTDA)[video coding applications]. In: Circuits and Systems. ISCAS 2005. IEEE International Symposium on, May 2005. IEEE, pp 5477–5480. doi:10.1109/ISCAS.2005.1465876

  52. Yu Y, Wang J (2012) Highly accurate estimation of sub-pixel motion using phase correlation. In: Chinese Conference on Pattern Recognition. Springer, pp 186–193. doi:10.1007/978-3-642-33506-8_24

  53. Zhai B, Zheng J, Li B (2016) Digital image stabilization based on adaptive motion filtering with feedback correction. Multimedia Tools and Applications:1–28. doi:10.1007/s11042-015-3183-3

  54. Zhang P, Zhuo T, Xie L, Zhang Y (2016) Deformable object tracking with spatiotemporal segmentation in big vision surveillance. Neurocomputing 204:87–96. doi:10.1016/j.neucom.2015.07.149

    Article  Google Scholar 

  55. Zhenyu W, Baochen J, Xudong Z, Yu C (2004) A new full-pixel and sub-pixel motion vector search algorithm for fast block-matching motion estimation in H. 264. In: Multi-Agent Security and Survivability. IEEE First Symposium on, Dec. 2004. IEEE, pp 345–348. doi:10.1109/ICIG.2004.13

  56. Zhou B, Chen J (2003) A fast two-step search algorithm for half-pixel motion estimation. In: Electronics, Circuits and Systems. ICECS 2003. Proceedings of the 2003 10th IEEE International Conference on, Dec. 2003. IEEE, pp 611–614. doi:10.1109/ICECS.2003.1301859

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charalampos Dimoulas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konstantoudakis, K., Vrysis, L., Papanikolaou, G. et al. High accuracy block-matching sub-pixel motion estimation through detection of error surface minima. Multimed Tools Appl 77, 5837–5856 (2018). https://doi.org/10.1007/s11042-017-4497-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4497-0

Keywords

Navigation