Skip to main content
Log in

Quaternion discrete fractional random transform for color image adaptive watermarking

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

As for the fractional transforms, to date only fractional Fourier transform (FrFT) has been applicable to color images in a holistic manner by using the quaternion algebra, yet, discrete fractional random transform (DFRNT) with the useful intrinsic randomness is still to be explored. This paper first defines quaternion DFRNT (QDFRNT) which generalizes DFRNT to efficiently process quaternion signals, and then applies QDFRNT to color image adaptive watermarking. For the QDFRNT, this paper also derives the relationship between QDFRNT of a quaternion signal and DFRNT of four components for this signal to efficiently compute QDFRNT. For the color image adaptive watermarking based on QDFRNT and SVM, in order to efficiently utilize the color information in the adaptive process, this paper also exploits the human vision system’s (HVS) masking properties of texture, edge and color tone directly from the color host image to adaptively adjust the watermark strength for each block. In addition, the constraints in watermark embedding are discussed to preserve the watermarking energy. Experimental results show that: (a) the proposed efficient computation method takes only half the computational time of the direct method; (b) the comparison of five color models (RGB, YUV, YIQ, CIEL*a*b* and YCbCr) shows that the proposed QDFRNT-based watermarking scheme using YCbCr color model has the overall best performance and can achieve a good balance between invisibility and robustness to the Checkmark attacks; (c) The proposed scheme is superior to the existing schemes respectively using DCT, DFRNT, discrete quaternion Fourier transform (DQFT), discrete fractional quaternion Fourier transform (DFrQFT), and quaternion radial moments (QRMs). Moreover, the fractional order and the random matrix of QDFRNT enhance the security of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bas P, Nihan NL, Chassery JM (2003) Color image watermarking using quaternion Fourier transform. In: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP 2003), Hong Kong, vol. III, pp 521–524

  2. Chan WL, Choi H, Baraniuk G (2004) Directional hypercomplex wavelets for multidimensional signal analysis and processing. In: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, Montreal, pp 996–999

  3. Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machine. ACM Trans Intel Syst Tec 2:27:1-27:27

  4. Chauhan DS, Singh AK, Kumar B, Saini JP (2017) Quantization based multiple medical information watermarking for secure e-Health. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-4886-4

  5. Chen BJ, Coatrieux G, Chen G, Sun XM, Coatrieux JL, Shu HZ (2014) Full 4-D quaternion discrete Fourier transform based watermarking for color images. Digit Signal Process 28(5):106–119

    Article  Google Scholar 

  6. Chen BJ, Shu HZ, Coatrieux G, Chen G, Sun XM, Coatrieux JL (2015) Color image analysis by quaternion-type moments. J Math Imaging Vis 51(1):124–144

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen BJ, Yang JH, Jeon B, Zhang XP (2017) Kernel quaternion principal component analysis and its application in RGB-D object recognition. Neurocomputing 266:293–303

    Article  Google Scholar 

  8. Chen BJ, Qi XM, Sun XM, Shi YQ (2017) Quaternion pseudo-Zernike moments combining both of RGB information and depth information for color image splicing detection. J Vis Commun Image R 49:283–290

    Article  Google Scholar 

  9. Ell TA, Sangwine SJ (2000) Decomposition of 2D hypercomplex Fourier transforms into pairs of complex Fourier transforms. In: Proc. 2000 10th European Signal Processing Conference, Tampere, pp 1–4

  10. Ell TA, Sangwine SJ (2007) Hypercomplex fourier transforms of color images. IEEE Trans Image Process 16(1):22–35

    Article  MathSciNet  MATH  Google Scholar 

  11. Fatima N, Tuptewar DJ (2016) Comparison of hybrid watermarking technique on different color spaces. In: Proc. 2016 Conf. Advances in Signal Processing (CASP), Pune, pp 13–17

  12. Feng W, Hu B (2008) Quaternion discrete cosine transform and its application in color template matching. In: Proc. 1st Int. Cong. Image and Signal Processing (CISP 2008), Cherbourg-Octeville, no. 2, pp 252–256

  13. Guo J, Liu ZJ, Liu ST (2007) Watermarking based on discrete fractional random transform. Opt Commun 272(2):344–348

    Article  MathSciNet  Google Scholar 

  14. Hamilton WR (1866) Elements of quaternions. Longmans, Green, & Company, London

    Google Scholar 

  15. Hartung F, Kutter M (1999) Multimedia watermarking techniques. Proc IEEE 87(7):1079–1107

    Article  Google Scholar 

  16. Hu HT, Hsu LY (2017) Collective blind image watermarking in DWT-DCT domain with adaptive embedding strength governed by quality metrics. Multimed Tools Appl 76(5):6575–6594

    Article  Google Scholar 

  17. Jiang SH, Zhang JQ, Hu B (2009) An adaptive watermarking algorithm in the hypercomplex space of a color image. Acta Electron Sin 37(8):1773–1778 (in Chinese)

    Google Scholar 

  18. Jin R, Kim J (2012) A digital watermarking scheme using hologram quantization. In: Proc. 2012 Int. Conf. Signal Processing, Image Processing and Pattern Recognition, Jeju Island, pp 39–46

  19. Jin LH, Song EM, Li L, Li X (2013) A quaternion gradient operator for color image edge detection. In: Proc. 2013 I.E. Int. Conf. Image Processing (ICIP2013), Melbourne, pp 3040–3044

  20. Kalra GS, Talwar R, Sadawarti H (2015) Adaptive digital image watermarking for color images in frequency domain. Multimed Tools Appl 74(17):6849–6869

    Article  Google Scholar 

  21. Lan RS, Zhou YC, Tang YY (2017) Quaternionic Weber local descriptor of color images. IEEE Trans Circuits Syst Video Techn 27(2):261–274

    Article  Google Scholar 

  22. Li JZ, Yu CY, Gupta BB, Ren XC (2017) Color image watermarking scheme based on quaternion Hadamard transform and Schur decomposition. Multimed Tools Appl. https://doi.org/10.1007/s11042-017-4452-0

  23. Liu ZJ, Zhao HF, Liu ST (2005) A discrete fractional random transform. Opt Commun 255(4):357–365

    Article  Google Scholar 

  24. Lu CS, Sun SW, Hsu CY, Chang PC (2006) Media hash-dependent image watermarking resilient against both geometric attacks and estimation attacks based on false positive-oriented detection. IEEE Trans Multimedia 8(4):668–685

    Article  Google Scholar 

  25. Mendlovic D, Zalevsky Z, Mas D, Garcia J, Ferreira C (1997) Fractional wavelet transform. Appl Opt 36(20):4801–4806

    Article  Google Scholar 

  26. Namias V (1980) The fractional order Fourier transform and its application to quantum mechanics. J Inst Math Applicat 25:241–265

    Article  MathSciNet  MATH  Google Scholar 

  27. Niu PP, Wang P, Liu YN, Yang HY, Wang XY (2016) Invariant color image watermarking approach using quaternion radial harmonic Fourier moments. Multimed Tools Appl 75(13):7655–7679

    Article  Google Scholar 

  28. Novak CL, Shafer SA (1987) Color edge detection. In: Proc. DARPA Image Understanding Workshop, Los Angeles, pp 35–37

  29. Pandey R, Singh AK, Kumar B, Mohan A (2016) Iris based secure NROI multiple eye image watermarking for teleophthalmology. Multimed Tools Appl 75(22):14381–14397

    Article  Google Scholar 

  30. Pei SC, Ding JJ (2002) Fractional cosine, sine, and Hartley transforms. IEEE Trans Signal Process 50(7):1661–1680

    Article  MathSciNet  MATH  Google Scholar 

  31. Pei SC, Yeh MH (2001) The discrete fractional cosine and sine transforms. IEEE Trans Signal Process 49(6):1198–1207

    Article  MathSciNet  MATH  Google Scholar 

  32. Peng H, Wang J, Wang WX (2009) Adaptive image watermarking approach based on kernel clustering and HVS. In: Proc. 8th Int. Workshop Fuzzy Logic and Applications, Palermo, pp 213–220

  33. Peng H, Wang J, Wang WX (2010) Image watermarking method in multiwavelet domain based on support vector machines. J Syst Softw 83(8):1470–1477

    Article  Google Scholar 

  34. Pereira S, Voloshynovskiy S, Madueño M, Marchand-Maillet S, Pun T (2001) Second generation benchmarking and application oriented evaluation. In: Proc. Int. Workshop Information Hiding (IH 2001), Pittsburgh, pp 340–353

  35. Qi H, Zheng D, Zhao J (2008) Human visual system based adaptive digital image watermarking. Signal Process 88(1):174–188

    Article  MATH  Google Scholar 

  36. Roopkumar R (2016) Quaternionic one-dimensional fractional Fourier transform. Optik 127(24):11657–11661

    Article  Google Scholar 

  37. Shen XH, Wu Y (2012) A unified approach to salient object detection via low rank matrix recovery. In: Proc. 2012 I.E. Int. Conf. Computer Vision and Pattern Recognition (CVPR2012), Providence, pp 853–860

  38. Singh AK, Dave M, Mohan A (2015) Multilevel encrypted text watermarking on medical images using spread-spectrum in DWT domain. Wirel Pers Commun 83(3):2133–2150

    Article  Google Scholar 

  39. Singh AK, Dave M, Mohan A (2016) Hybrid technique for robust and imperceptible multiple watermarking using medical images. Multimed Tools Appl 75(14):8381–8401

    Article  Google Scholar 

  40. Su QT, Niu YG, Wang G, Jia SL, Yue J (2014) Color image blind watermarking scheme based on QR decomposition. Signal Process 94:219–235

    Article  Google Scholar 

  41. Subakan ON, Vemuri BC (2011) A quaternion framework for color image smoothing and segmentation. Int J Comput Vis 91(3):233–250

    Article  MathSciNet  MATH  Google Scholar 

  42. Tsai HH, Sun DW (2007) Color image watermark extraction based on support vector machines. Inf Sci 177(2):550–569

    Article  Google Scholar 

  43. Tsougenis ED, Papakostas GA, Koulouriotis DE, Karakasis EG (2014) Adaptive color image watermarking by the use of quaternion image moments. Expert Syst Appl 41(14):6408–6418

    Article  Google Scholar 

  44. Verma VS, Jha RK, Ojha A (2015) Digital watermark extraction using support vector machine with principal component analysis based feature reduction. J Vis Commun Image R 31(C):75–85

    Article  Google Scholar 

  45. Wang YQ, Peng ZM (2016) The optimal fractional S transform of seismic signal based on the normalized second-order central moment. J Appl Geophys 129:8–16

    Article  Google Scholar 

  46. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

  47. Wang XY, Wang C, Yang HY, Niu PP (2013) A robust blind color image watermarking in quaternion Fourier transform domain. J Syst Softw 86(2):255–277

    Article  Google Scholar 

  48. Wang JW, Li T, Shi YQ, Lian SG, Ye JY (2016) Forensics feature analysis in quaternion wavelet domain for distinguishing photographic images and computer graphics. Multimed Tools Appl 76(22):23721–23737

  49. Wei DY, Li YM (2013) Different forms of Plancherel theorem for fractional quaternion Fourier transform. Optik 124(24):6999–7002

    Article  Google Scholar 

  50. Xie X, Livermore C (2016) A pivot-hinged, multilayer SU-8 micro motion amplifier assembled by a self-aligned approach. In: Proc. 2016 I.E. 29th Int. Conf. Micro Electro Mechanical Systems (MEMS), Shanghai, pp 75–78

  51. Xie X, Livermore C (2017) Passively self-aligned assembly of compact barrel hinges for high-performance, out-of-plane mems actuators. In Proc. 2017 I.E. 30th Int. Conf. Micro Electro Mechanical Systems (MEMS), Las Vegas, pp 813–816

  52. Xie X, Zaitsev Y, Velásquez-García LF, Teller S, Livermore C (2014) Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile displays. J Micromech Microeng 24(12):125014

    Article  Google Scholar 

  53. Xie X, Zaitsev Y, Velásquez-García LF, Teller S, Livermore C (2014) Compact, scalable, high-resolution, MEMS-enabled tactile displays. In: Proc. 30th Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, South Carolina, pp 127–130

  54. Xu GL, Wang XT, Xu XG (2008) Fractional quaternion Fourier transform, convolution and correlation. Signal Process 88(10):2511–2517

    Article  MATH  Google Scholar 

  55. Zear A, Singh AK, Kumar P (2016) Multiple watermarking for healthcare applications. J Intell Syst. https://doi.org/10.1515/jisys-2016-0036

  56. Zear A, Singh AK, Kumar P (2016) A proposed secure multiple watermarking technique based on DWT, DCT and SVD for application in medicine. Multimed Tools Appl. https://doi.org/10.1007/s11042-016-3862-8

  57. Zhang L, Gu Z, Li H (2013) SDSP: A novel saliency detection method by combining simple priors. In: Proc. 2013 I.E. Int. Conf. Image Processing (ICIP2013), Melbourne, pp 171–175

  58. Zhou NR, Li HL, Wang D, Pan S, Zhou Z (2015) Image compression and encryption scheme based on 2D compressive sensing and fractional Mellin transform. Opt Commun 343:10–21

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSFC under Grants 61572258, 61772281, 61572257, and 61602253, the Natural Science Foundation of Jiangsu Province of China under Grants BK20151530, and BK20150925, BK21+ program by the Ministry of Education of Korea, the G-ITRC support program (IITP-2017-2015-0-00742) supervised by the IITP, the PAPD fund, sponsored by Qing Lan Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beijing Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Zhou, C., Jeon, B. et al. Quaternion discrete fractional random transform for color image adaptive watermarking. Multimed Tools Appl 77, 20809–20837 (2018). https://doi.org/10.1007/s11042-017-5511-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5511-2

Keywords

Navigation