Skip to main content
Log in

Deep Event Learning boosT-up Approach: DELTA

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Nowadays, the video surveillance systems may be omnipresent, but essential for supervision everywhere, e.g., ATM, airport, railway station and other crowded situations. In the multi-view video systems, various cameras are producing a huge amount of video content around the clock which makes it difficult for fast browsing, retrieval, and analysis. Accessing and managing such huge data in real time becomes a real challenging task because of inter-view dependencies, illumination changes and the bearing of many inactive frames. The work highlights an accurate and efficient technique to detect and summarize the event in multi-view surveillance videos using boosting, a machine learning algorithm, as a solution to the above issues. Interview dependencies across multiple views of the video are captured via weak learning classifiers in boosting algorithm. The light changes and still frames are tackled with moving an object in the frame by Deep learning framework. It helps to reach the correct decision for the active frame and inactive frame, without any prior information about the number of issues in a video. Target, as well as subjective ratings, clearly indicate the potency of our proposed DELTA model, where it successfully reduces the video data, while keeping the important information as events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. http://media.ee.ntu.edu.tw/research/summarization/

  2. https://cs.nju.edu.cn/ywguo/summarization.html

References

  1. Alfaro et al (2016) Action recognition in video using sparse coding and relative features. CVPR, 2688–2697

  2. Almeida J et al (2013) Online video summarization on compressed domain. JVCIR 24(6):729–738

    Google Scholar 

  3. Anurag K et al (2017) A novel superpixel based color spatial feature for salient object detection. IEEE CICT’17

  4. Brunelli R et al (1999) A survey on the automatic indexing of video data. JVCIR 10(2):78–112

    Google Scholar 

  5. Chang P et al (2002) Extract highlights from baseball game video with hidden markov models. IEEE ICIP 1:I-609

    Google Scholar 

  6. Chang et al (2016) They are not equally reliable: semantic event search using differentiated concept classifiers. CVPR, 1884–1893

  7. Fu Y et al (2010) Multi view video summmarization. IEEE TMM 12(7):717–729

    Google Scholar 

  8. Fu Y et al (2014) Multi-view metric learning for multi-video video summarization, CoRR, vol. abs/1405.6434, [Online]. Available: 1405.6434

  9. Gagandeep S et al (2017) PICS: a novel technique for video summarization. Springer MISP’17

  10. Gan et al (2015) Devnet: adeep event network for multimedia event detection and evidence recounting. CVPR, 2568–2577

  11. Gygli et al (2015) Video summarization by learning submodular mixtures of objectives. CVPR, 3090–3098

  12. Hao W et al (2006) Generalized multiclass adaboost and its applications to multimedia classification. CVPR’06 Workshop, 113–113

  13. Jasim H et al (2016) Surveillance video summarization based on histogram differencing and sum conditional variance. WASET Inter J Comp Elect Automat Control Inform Engg 10(9):1652–1657

    MathSciNet  Google Scholar 

  14. Jiang G et al (2015) Super fast event recognition in internet videos. IEEE TMM 17(8):1174–1186

    Google Scholar 

  15. Jones et al (2006) Method and system for object detection in digital images. U.S. Patent No. 7,099,510.29

  16. Krishan K et al (2017) F-DES: fast and deep event summarization. IEEE TMM

  17. Krishan K et al (2017) SOMES: an efficient SOM technique for event summarization in multi-view surveillance videos. Springer ICACNI’17

  18. Krishan K et al (2017) V-LESS: a video from linear event summarieS. Springer CVIP’17

  19. Krishan K et al (2017) D-CAD: deep and crowded anomaly detection. ACM ICCCT’17

  20. Krizhevsky A et al (2012) Imagenet classification with deep convolutional neural networks. ANIPS, 1097–1105

  21. Krogh A et al (1995) Neural network ensembles, cross validation, and active learning. ANIPS 7:231–238

    Google Scholar 

  22. Kuanar S et al (2015) Multi-view video summarization using bipartite matching constrained optimum-path forest clustering. IEEE TMM 17(8):1166–1173

    Google Scholar 

  23. Kumar K et al (2016) Equal partition based clustering approach for event summarization in videos. SITIS, 119–126

  24. Kumar K et al (2017) Key-lectures: keyframes extraction in video lectures. Springer MISP’17

  25. Kumar K et al (2017) Eratosthenes sieve based key-frame extraction technique for event summarization in videos. MTAP, 1–22

  26. Kumar K et al (2017) Event BAGGING: a novel event summarization approach in multi-view surveillance videos IEEE IESC’17

  27. Lu S et al (2014) A bag-of-importance model with locality-constrained coding based feature learning for video summarization. IEEE TMM 16(6):1497–1509

    Google Scholar 

  28. Ma F et al. (2005) A generic framework of user attention model and its application in video summarization. IEEE TMM 7(5):907–919

    Google Scholar 

  29. Mazloom M et al (2014) Conceptlets: selective semantics for classifying video events. IEEE TMM 16(8):2214–2228

    Google Scholar 

  30. Mazloom M et al (2016) TagBook: a semantic video representation without supervision for event detection. IEEE TMM 18(7):1378–1388

    Google Scholar 

  31. Merler M et al (2012) Semantic model vectors for complex video event recognition. IEEE TMM 14(1):88–101

    Google Scholar 

  32. Mundur P et al (2006) Keyframe-based video summarization using Delaunay clustering. IJDL 6(2):219–232

    Google Scholar 

  33. Musfequs S et al (2016) Video summarization using geometric primitives. IEEE DICTA’16

  34. Nagasaka A (1991) Automatic video indexing and full-video search for object appearances. In: Conf. on visual database system, pp 119–133

  35. Ou H et al (2015) On-line multi-view video summarization for wireless video sensor network. IEEE J S T Sig Process 9(1):165–179

    Article  Google Scholar 

  36. Panagiotakis C et al (2009) Equivalent key frames selection based on iso-content principles. TCSVT 19(3):447–6451

    Google Scholar 

  37. Potapov D et al (2014) Category-specific video summarization. ECCV, 540–555

  38. Qian S et al (2016) Multi-modal event topic model for social event analysis. IEEE TMM 18(2):233–246

    Google Scholar 

  39. Singh N et al (2016) A convex hull approach in conjunction with Gaussian mixture model for salient object detection. DSP, 22–31

  40. Singh N et al (2016) A novel position prior using fusion of rule of thirds and image center for salient object detection MTAP. https://doi.org/10.1007/s11042-016-3676-8

    Article  Google Scholar 

  41. Sun X et al (2000) Video summarization using R-sequences. Real-Time Imag 6 (6):449–459

    Article  Google Scholar 

  42. Valdes V et al (2008) Binary tree based on-line video summarization. ACM TRECVid video summarization workshop, 134–138

  43. Vezhnevets A et al (2007) Avoiding boosting overfitting by removing confusing samples. Machine learning: ECML, 430–441

  44. Wang M et al (2012) Event driven web video summarization by tag localization and key-shot identification. IEEE TMM 14(4):975–985

    Google Scholar 

  45. Wang S et al (2014) Semi-supervised multiple feature analysis for action recognition. IEEE TMM 16(2):289–298

    Google Scholar 

  46. Wang F et al (2014) Video event detection using motion relativity and feature selection. IEEE TMM 16(5):1303–1315

    Google Scholar 

  47. Wang et al (2015) Video event recognition with deep hierarchical context model. CVPR, 4418–4427

  48. Weber B (2008) Generic object detection using AdaBoost. Department of Computer Science University of California, Santa Cruz

  49. Wu B et al (2004) Fast rotation invariant multi-view face detection based on real adaboost. IEEE FGR’04, 79–84

  50. Xiong Z et al (2004) Effective and efficient sports highlight extraction using the minimum description length criterion in selecting GMM structures. IEEE ICME’04 3:1947–1950

    Google Scholar 

  51. Xu et al (2015) A discriminative CNN video representation for event detection. CVPR, 1798–1807

  52. Xu B et al (2016) Fast summarization of user-generated videos: exploiting semantic, emotional, & quality clues. IEEE TMM 23,3:23–33

    Google Scholar 

  53. Yang X et al (2015) Automatic visual concept learning for social event understanding. IEEE TMM 17(3):346–358

    Google Scholar 

  54. Zhang T et al (2012) A generic framework for video annotation via semi-supervised learning. IEEE TMM 14(4):1206–1219

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishan Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Shrimankar, D.D. Deep Event Learning boosT-up Approach: DELTA. Multimed Tools Appl 77, 26635–26655 (2018). https://doi.org/10.1007/s11042-018-5882-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5882-z

Keywords

Navigation