Skip to main content
Log in

Creep characterization of solder bumps using nanoindentation

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Current nanoindentation techniques for the measurement of creep properties are applicable to viscoplastic materials with negligible elastic deformations. A new technique for characterization of creep behavior is needed for situations where the elastic deformation plays a significant role. In this paper, the effect of elastic deformation on the determination of creep parameters using nanoindentation with a self-similar nanoindenter tip is evaluated using finite element analysis (FEA). It is found that the creep exponent measured from nanoindentation without taking into account of the contribution of elastic deformation tends to be higher than the actual value. An effective correction method is developed to consider the elastic deformation in the calculation of creep parameters. FEA shows that this method provides accurate creep exponent. The creep parameters, namely the creep exponent and activation energy, were measured for three types of reflowed solder bumps using the nanoindentation method. The measured parameters were verified using FEA. The results show that the new correction approach allows extraction of creep parameters with precision from nanoindentation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abtew, M., Guna, S.: Lead-free solders in microelectronics. Mater. Sci. Eng., R Rep. 27, 95–141 (2000)

    Article  Google Scholar 

  • Alkorta, J., Martínez-Esnaola, M., Sevillano, J.G.: On the elastic effects in power-law indentation creep with sharp conical indenters. J. Mater. Res. 23(01), 182–188 (2007)

    Article  Google Scholar 

  • Bower, A.F., Fleck, N.A., Needleman, A., Ogbonna, N.: Indentation of a power law creep solid. Proc. R. Soc. A 441, 97–124 (1993)

    Article  MATH  Google Scholar 

  • Cheng, Y.-T., Cheng, C.-M.: Scaling relationships in indentation of power-law creep solids using self-similar indenters. Philos. Mag. Lett. 81, 9–16 (2001)

    Article  Google Scholar 

  • Dorn, J.E., Shanley, F.R.: Mechanical Behavior of Materials at Elevated Temperature. McGraw-Hill, New York (1961)

    Google Scholar 

  • Fujiwara, M., Otsuka, M.: Indentation creep of \(\beta\)–Sn and Sn–Pb eutectic alloy. Mater. Sci. Eng. A 319–321, 929–933 (2001)

    Article  Google Scholar 

  • Lu, H., Wang, B., Ma, J., Huang, G., Viswanathan, H.: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7(3/4), 189–207 (2003)

    Article  Google Scholar 

  • Lucas, B.N., Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601–610 (1999)

    Article  Google Scholar 

  • Mayo, M.J., Nix, W.D.: A micro indentation study of superplasticity in Pb, Sn, and Sn-38 Wt% Pb. Acta Mater. 36, 2183–2192 (1988)

    Article  Google Scholar 

  • Roshanghias, A., Kokabi, A.H., Miyashita, Y., Mutoh, Y., Ihara, I., Fatt, R.G., Madaah-Hosseini, H.R.: Nanoindentation creep behavior of nanocomposite Sn–Ag–Cu solders. J. Electron. Mater. 41(8), 2057–2064 (2012)

    Article  Google Scholar 

  • Shen, L., Cheong, W.C.D., Foo, Y.L., Chen, Z.: Nanoindentation creep of tin and aluminium: a comparative study between constant load and constant strain rate methods. Mater. Sci. Eng. A 532, 505–510 (2012)

    Article  Google Scholar 

  • Shohji, I., Yoshida, T., Takahashi, T., Hioki, S.: Tensile properties of Sn–Ag based lead-free solders and strain rate sensitivity. Mater. Sci. Eng. A 366, 50–55 (2004)

    Article  Google Scholar 

  • Sneddon, I.N.: The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  • Su, C., Herbert, E.G., Sohn, S., LaManna, J.A., Oliver, W.C., Pharr, G.M.: Measurement of power-law creep parameters by instrumented indentation methods. J. Mech. Phys. Solids 61, 517–536 (2013)

    Article  Google Scholar 

  • Tu, K.: Solder Joint Technology: Materials, Properties, and Reliability. Springer, Berlin (2007)

    Google Scholar 

Download references

Acknowledgements

We acknowledge the support of DOE Nuclear Energy University Program (NEUP) grant 09-416. We also thank the additional support from NSF CMMI-1031829, CMMI-1132174 and ECCS-1307997. We appreciate Huiyang Luo and Yong He at the University of Texas at Dallas for experimental setup and James Rosa at IBM for the solder sample preparation. Lu also acknowledges Louis A. Beecherl Chair for additional support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbing Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Liu, X.H., Fu, B. et al. Creep characterization of solder bumps using nanoindentation. Mech Time-Depend Mater 21, 287–305 (2017). https://doi.org/10.1007/s11043-016-9330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-016-9330-z

Keywords

Navigation