Skip to main content
Log in

Design and validation of a multi-body model of a front suspension bicycle and a passive rider for braking dynamics investigations

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The global spread of Electric Bicycles (EBs) is increasing more and more. In addition to supporting the ease of cycling, the electric energy available can also be used for innovative braking control systems. The project BikeSafe picks up on this idea and aims at developing an active Braking Dynamics Assistance system (BDA) for EBs equipped with hydraulic brakes. A simulation model taking into account all substantial braking dynamics influences is necessary for the model-based design of the BDA. This paper presents a Multi-Body Model (MBM) of a front suspension bicycle and a passive rider. This MBM has been experimentally validated for in-plane braking dynamics using road tests. It has real-time ability and can therefore be used as a virtual representation of the plant for the model-based design process of the BDA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Eisenberger, D.: Zahlen-Daten-Fakten zum Deutschen E-Bike-Markt. German Bicycle Industry Association (ZIV), Press Release, Berlin (2015)

    Google Scholar 

  2. Maier, O., Pfeiffer, M., Wrede, J.: Development of a braking dynamics assistance systems for electric bicycles: design, implementation, and evaluation of road tests. Trans. Mechatron. 21(3), 1671–1679 (2015). doi:10.1109/TMECH.2015.2505186

    Article  Google Scholar 

  3. VDI 2206. Design methodology for mechatronic systems. VDI 2206:2004-06 (2004)

  4. Cossalter, V., Lot, R., Massaro, M.: An advanced multibody code for handling and stability analysis of motorcycles. Meccanica 46(5), 943–958 (2010). doi:10.1007/s11012-010-9351-7

    Article  MathSciNet  MATH  Google Scholar 

  5. Sharp, R.S.: The stability and control of motorcycles. J. Mech. Eng. Sci. 13(5), 16–329 (1971). doi:10.1243/JMES_JOUR_1971_013_051_02

    Article  Google Scholar 

  6. Sharp, R.S.: The dynamics of single track vehicles. Veh. Syst. Dyn. 5(1–2), 67–77 (1976). doi:10.1080/00423117508968406

    Article  Google Scholar 

  7. Sharp, R.S., Limebeer, D.J.N.: A motorcycle model for stability and control analysis. Multibody Syst. Dyn. 6(2), 123–142 (2001). doi:10.1023/A:1017508214101

    Article  MATH  Google Scholar 

  8. Sharp, R.S., Evangelou, S., Limebeer, D.J.N.: Advances in the modelling of motorcycle dynamics. Multibody Syst. Dyn. 12(3), 251–283 (2004). doi:10.1023/B:MUBO.0000049195.60868.a2

    Article  MATH  Google Scholar 

  9. Koenen, C.: The dynamic behaviour of a motorcycle when running straight ahead and when cornering. Ph.D. dissertation, Dept. Mechanical Engineering, Delft University of Technology, Delft, Netherlands (1983)

  10. Ruijs, P.A.J., Pacejka, H.B.: Recent research in lateral dynamics of motorcycles. Veh. Syst. Dyn. 15(1), 467–480 (1986). doi:10.1080/00423118608969155

    Article  Google Scholar 

  11. Meijaard, J.P., Papadopoulos, J.M., Schwab, A.L.: Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proc. R. Soc. A 436, 1955–1982 (2007). doi:10.1098/rspa.2007.1857

    Article  MathSciNet  MATH  Google Scholar 

  12. Kooijman, J.D.G., Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: A bicycle can be self-stable without gyroscopic or caster effects. Science 332(6027), 339–342 (2011). doi:10.1126/science.1201959

    Article  MathSciNet  MATH  Google Scholar 

  13. Kooijman, J.D.G., Schwab, A.L., Meijaard, J.P.: Experimental validation of a model of an uncontrolled bicycle. Multibody Syst. Dyn. 19(1), 115–132 (2007). doi:10.1007/s11044-007-9050-x

    MATH  Google Scholar 

  14. Åström, K.J., Lunze, J.: Why are we able to ride a bicycle? Automatisierungstechnik 49(10), 427–435 (2009). doi:10.1524/auto.2001.49.10.427

    Google Scholar 

  15. Åström, K.J., Klein, R.E., Lennartsson, A.: Bicycle dynamics and control. IEEE Control Syst. 25(4), 26–47 (2005). doi:10.1109/MCS.2005.1499389

    Article  MathSciNet  Google Scholar 

  16. Franke, G., Suhr, W., Rieß, F.: An advanced model of bicycle dynamics. Eur. J. Phys. 11(2), 116–121 (2000). doi:10.1088/0143-0807/11/2/010

    Article  MathSciNet  Google Scholar 

  17. Hand, R.S.: Comparisons and stability analysis of linearized equations of motion for a basic bicycle model. M.S. thesis, Cornell University, NY (1988)

  18. Cerone, V., Andreo, D., Larsson, M., Regruto, D.: Stabilization of a riderless bicycle a linear-parameter-varying approach. IEEE Control Syst. 30(5), 23–32 (2010). doi:10.1109/MCS.2010.937745

    Article  MathSciNet  Google Scholar 

  19. Wu, C.-C.: Static and dynamic analyses of mountain bikes and their riders. Ph.D. dissertation, University of Glasgow, Glasgow (2012)

  20. Breuer, J.: Untersuchung des Einflusses geometrischer Parameter auf das Fahrverhalten von Einspurfahrzeugen. M.S. thesis, Dept. Mechanical Engineering and Mechatronic, University of Applied Sciences Aachen, Germany (2013)

  21. Waechter, M., Riess, F., Zacharias, N.: A multibody model for the simulation of bicycle suspension systems. Veh. Syst. Dyn. 37(1), 3–28 (2002). doi:10.1076/VESD.37.1.3.3539

    Article  Google Scholar 

  22. Redfield, R.: Large motion mountain biking dynamics. Veh. Syst. Dyn. 43(12), 845–865 (2005). doi:10.1080/00423110412331289844

    Article  Google Scholar 

  23. Moore, J.K.: Human control of a bicycle. Ph.D. dissertation, Dept. Mechanical and Aerospace Engineering, University of California, Davis, CA (2012)

  24. Moore, J.K., Hubbard, M., Schwab, A.L., Kooijman, J.D.G., Peterson, D.L.: Statistics of bicycle rider motion. Proc. Eng. 2(2), 2937–2942 (2010). doi:10.1016/j.proeng.2010.04.091

    Article  Google Scholar 

  25. Moore, J.K., Kooijman, J.D.G., Schwab, A.L., Hubbard, M.: Rider motion identification during normal bicycling by means of principal component analysis. Multibody Syst. Dyn. 25, 225–244 (2011). doi:10.1007/s11044-010-9225-8

    Article  Google Scholar 

  26. Wang, E.L., Hull, M.L.: A model for determining rider induced energy losses in bicycle suspension systems. Veh. Syst. Dyn. 25(3), 223–246 (1996). doi:10.1080/00423119608968966

    Article  Google Scholar 

  27. Wang, E.L., Hull, M.L.: A dynamic system model of an off-road cyclist. J. Biomech. Eng. 119(3), 248–253 (1997). doi:10.1115/1.2796088

    Article  Google Scholar 

  28. Besselink, I.J.M.: Vehicle dynamics analysis using SimMechanics and TNO Delft-tyre. In: The MathWorks International Automotive Conference, IAC 2006, Stuttgart, Germany (2006)

    Google Scholar 

  29. Maier, O., Györfi, B., Wrede, J., Arnold, T., Moia, A.: In-depth analysis on bicycle hydraulic disc brakes. Mech. Syst. Signal Process. 95, 310–323 (2017). doi:10.1016/j.ymssp.2017.03.044

    Article  Google Scholar 

  30. Schiebler, T.H., Korf, H.W.: Anatomie Histologie, Entwicklungsgeschichte, makroskopische und mikroskopische Anatomie, Topographie (2007). ISBN 978-3-7985-1770-7

    Book  Google Scholar 

  31. Schramm, D., Hiller, M., Bardini, R.: Vehicle Dynamics: Modeling and Simulation, pp. 43–73. Springer, Berlin (2014). doi:10.1007/978-3-540-36045-2

    MATH  Google Scholar 

  32. ISO 8855. Road vehicles—vehicle dynamics and road-holding ability. ISO 8855:2011 (2011)

  33. Pauwelussen, J.P.: Full vehicle ABS braking using the SWIFT rigid ring tyre model. IFAC Control Eng. Pract., CEP 11(2), 199–207 (2003)

    Article  MathSciNet  Google Scholar 

  34. Jansen, S.T.H., Zegelaar, P.W.A., Pacejka, H.B.: The influence of in-plane tyre dynamics on ABS braking of a quarter vehicle model. Veh. Syst. Dyn. 32(2–3), 249–561 (1999). doi:10.1076/VESD.32.2.249.2086

    Article  Google Scholar 

  35. Jaiswal, M., Mavros, G., Rahnejat, H., King, P.D.: Influence of tyre transience on anti-lock braking. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 224(1), 1–17 (2009)

    Google Scholar 

  36. Popov, V.L.: Kontaktmechanik und Reibung, pp. 309–333. Springer, Berlin (2010). ISBN 978-3-642-13302-2

    Book  Google Scholar 

  37. Bellersheim, R., et al.: Tabellenbuch Fahrradtechnik, p. 300. Haan-Gruiten, Europa-Lehrmittel (2014). ISBN 978-3808523336

  38. Artmann, U., et al.: Fachkunde Fahrradtechnik, p. 384. Haan-Gruiten, Europa-Lehrmittel (2014). ISBN 978-3808522950

  39. Maier, O., Györfi, B., Kubatschek, A., Pfeiffer, M., Wrede, J.: Simulationsgestützte Bewertung kritischer Einflussgrößen auf das Vorderradblockieren bei Elektrofahrrädern. In: ASIM/GI-Fachgruppen Workshop, Stralsund, Germany, June 18–19, 2015 pp. 257–268 (2015). ISBN 978-3-9813334-9-7

    Google Scholar 

  40. ISO 4210. Safety requirements for bicycles, part 6: frame and fork test methods. ISO 4210-6:2014 (2014)

  41. Doria, A., et al.: Identification of the mechanical properties of bicycle tyres for modelling of bicycle dynamics. Veh. Syst. Dyn. 51(3), 405–420 (2013). doi:10.1080/00423114.2012.754048

    Article  Google Scholar 

  42. Bulsink, V., Doria, A., et al.: The effect of tyre and rider properties on the stability of a bicycle. Adv. Mech. Eng. 7(12), 1–19 (2015). doi:10.1177/1687814015622596

    Article  Google Scholar 

  43. Dressel, A.E.: Measuring and modeling the mechanical properties of bicycle tires. Ph.D. dissertation, The University of Wisconsin-Milwaukee, Milwaukee (2013)

  44. Dressel, A.E.: Measuring dynamic properties of bicycle tires. In: Symposium on Dynamics and Control of Single Track Vehicles, Proceedings of Bicycle and Motorcycle Dynamics, Delft (2010)

    Google Scholar 

  45. Dressel, A.E., Rahman, A.: Measuring sideslip and camber characteristics of bicycle tires. Veh. Syst. Dyn. 50(8), 1365–1378 (2011). doi:10.1080/00423114.2011.615408

    Article  Google Scholar 

  46. Maier, O., Hillenbrand, S., Wrede, J., Freund, A., Gauterin, F.: Vertical and longitudinal characteristics of a bicycle tire. Tire Sci. Technol. (accepted for publication)

  47. Burckhardt, M.: Der Reifen als Regelgröße. In: Fahrwerktechnik: Radschlupf-Regelsysteme, pp. 15–62. Vogel, Würzburg (1993)

    Google Scholar 

  48. National Aeronautics and Space Administration. International space station flight. Crew Integration Standard, NASA-STD-3000/T (1999)

  49. Kłodowski, A., Rantalainen, T., Heinonen, A., Sievänen, H., Mikkola, A.: The use of the flexible multibody approach for lower body skeletal loading analysis. Proc. IUTAM 2, 93–100 (2011). doi:10.1016/j.piutam.2011.04.010

    Article  MATH  Google Scholar 

  50. Cossalter, V.: Rectilinear motion of motorcycle. In: Motorcycle Dynamics, 2nd edn., pp. 73–104 (2006). ISBN 978-1-4303-0861-4

    Google Scholar 

  51. Maier, O., Pfeiffer, M., Wrede, J.: Bremsdynamisches Assistenzsystem für elektrifizierte Fahrräder: Aufbau und Validierung eines Umgebungsmodells als Grundlage der modellbasierten Entwicklung. In: VDI Tagung Mechatronik, Dortmund, Germany, March 12–13, 2015, pp. 271–276 (2015). ISBN 978-3-00-048814-6

    Google Scholar 

  52. ISO 9000. Quality management systems—fundamentals and vocabulary. ISO 9000:2015 (2015)

  53. Bauer, K., Schick, S., Wagner, A., Zhou, K., Peldschus, S., Malczyk, A.: Untersuchungen zur Schutzwirkung des Fahrradhelms. Research report No. 32, German Insurance Association, Berlin (2015)

  54. Maier, O., Scharpf, S., Pfeiffer, M., Wrede, J.: Conditions of nose-over and front wheel lockup on electric bicycles. In: 17th Int. Conf. on Research and Education in Mechatronics, Compiègne, France, June 15–17 (2016). doi:10.1109/MECATRONICS.2016.7547145

    Google Scholar 

  55. Bachmann, B.: Wechselwirkungen im Prozeß der Reibung zwischen Reifen und Fahrbahn, pp. 45–106. VDI Verlag No. 12/360, Düsseldorf (1998)

Download references

Acknowledgements

The authors would like to thank the ministry of education and research in Germany (BMBF) for sponsoring the project (FKZ 03FH063PX3). Furthermore, the authors thank all academic and industrial partners for supporting BikeSafe.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Maier.

Additional information

Sponsored by the German Ministry of Education and Research (BMBF)

Appendix

Appendix

Table 2 Parameters of the test bike

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maier, O., Györfi, B., Wrede, J. et al. Design and validation of a multi-body model of a front suspension bicycle and a passive rider for braking dynamics investigations. Multibody Syst Dyn 42, 19–45 (2018). https://doi.org/10.1007/s11044-017-9576-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9576-5

Keywords

Navigation