Skip to main content
Log in

Modeling and analysis of friction including rolling effects in multibody dynamics: a review

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Friction exists in most mechanical systems, and it can have a major influence on their dynamic performance and operating conditions. As a consequence of frictional contact phenomena, energy is dissipated and the state of a system can change slowly and rapidly, depending on the nature of the contact, continuous or impact condition. Other effects associated with friction in mechanical systems are the vibration and noise propagation of the system components, nonlinear systems’ behavior and wear. Overall, the knowledge of the friction regimen, as well as the frictional forces developed at the interface of mechanical parts in contact with relative motion, is crucial for the dynamic analysis of mechanical systems, and has consequences in the design process. Thus, this work is a review of the modeling and analysis of frictional effects in multibody systems with the purpose of better understanding and obtaining accurate responses. In this process, pure dry sliding friction, stick–slip effect, viscous friction, Stribeck effect, and frictional lag are some of the main phenomena associated with friction, which are addressed in depth. Overall, the friction models can be divided into two main groups, namely the “static friction models” and the “dynamic friction models”. The static models describe the steady-state behavior of the relation friction-force/relative-velocity, while the dynamic models allow for the capturing of more physical responses and properties by using extra state variables. In a simpler manner, the static and dynamic friction models differ mostly in the modeled frictional effects, implementation complexity, and computational efficiency. Hence, this research is aimed at analyzing in detail the role of friction modeling in the dynamic response of multibody system, as well as addressing the importance of friction models selection for accurately describing the friction related phenomena. Demonstrative application examples, which include friction in ideal mechanical joints and systems involving contact–impact events, including an example of rolling contact will be considered and investigated to illustrate the main assumptions and procedures adopted in this work. The results from this study indicate that in most cases, a static friction model, which accounts for static friction and avoids the discontinuity at zero velocity, is a suitable choice. A more advanced dynamic friction model has to be developed to be utilized for systems containing high variations of normal load, namely with impact conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985). ISBN 0521347963

    Book  MATH  Google Scholar 

  2. Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Springer, Netherlands (1990). ISBN 9789048140664

    Book  MATH  Google Scholar 

  3. Popov, V.: Contact Mechanics and Friction: Physical Principles and Applications. Springer, Berlin (2017). ISBN 978-3-662-53080-1

    Book  Google Scholar 

  4. Hertz, H.: Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1881)

    MATH  Google Scholar 

  5. Coulomb, C.A.: Théorie des machines simples, en ayant égard au frottement de leurs parties, et à la roideur des cordages. Mémoire de Mathématique et de Physique, Paris (1785)

    Google Scholar 

  6. Flamant, A.: Sur la répartition des pressions dans un solide rectangulaire chargé transversalement. C. R. Acad. Sci. Paris 114, 1465–1468 (1892)

    MATH  Google Scholar 

  7. Timoshenko, S.: Theory of Elasticity. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  8. Hunter, S.C.: The rolling contact of a rigid cylinder with a viscoelastic half-space. J. Appl. Mech. 28(4), 611–617 (1961)

    Article  MATH  Google Scholar 

  9. Bhargava, V., Hahn, G., Rubin, C.A.: An elastic-plastic finite element model of rolling contact, part 2: analysis of repeated contacts. J. Appl. Mech. 52(1), 75–82 (1985)

    Article  Google Scholar 

  10. Hamrock, B.J., Dowson, D.: Ball Bearing Lubrication: The Elastohydrodynamics of Elliptical Contacts. Wiley-Interscience, New York (1981)

    Google Scholar 

  11. Bower, A.F., Johnson, K.L.: The influence of strain hardening on cumulative plastic deformation in rolling and sliding line contact. J. Mech. Phys. Solids 3784, 471–493 (1989)

    Article  Google Scholar 

  12. Ringsberg, J.W.: Life prediction of rolling contact fatigue crack initiation. Int. J. Fatigue 23(7), 575–586 (2001)

    Article  Google Scholar 

  13. Raje, N., Sadeghi, F., Rateick, R.: A statistical damage mechanics model for subsurface initiated spalling in rolling contacts. J. Tribol. 130(4), 042201 (2008), 11 pp.

    Article  Google Scholar 

  14. Pöschel, T., Schwager, T., Brilliantov, N.V.: Rolling friction of a hard cylinder on a viscous plane. Eur. Phys. J. B 10(1), 169–174 (1999)

    Article  Google Scholar 

  15. Stolarski, T.A., Tobe, S.: Rolling Friction. Tribology in Practice Series. Wiley, Chichester (2001)

    Google Scholar 

  16. Cherepanov, G.P.: Theory of rolling: solution of the Coulomb problem. J. Appl. Mech. Tech. Phys. 55(1), 182–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. A 324, 301–313 (1971)

    Article  Google Scholar 

  18. Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53(2), 314–326 (1975)

    Article  Google Scholar 

  19. Armstrong-Hélouvry, B., Dupont, P., Canudas de Wit, C.: A survey of models, analysis tools and compensation methods for the control of machines with friction. Automatica 30, 1083–1138 (1994)

    Article  MATH  Google Scholar 

  20. Olsson, H., Åström, K.J., Canudas de Wit, C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4, 176–195 (1998)

    Article  MATH  Google Scholar 

  21. Awrejcewicz, J., Olejnik, P.: Analysis of dynamic systems with various friction laws. Appl. Mech. Rev. 58(6), 389–411 (2005)

    Article  Google Scholar 

  22. Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83(4), 1785–1801 (2016)

    Article  MATH  Google Scholar 

  23. Marques, F., Flores, P., Claro, J.C.P., Lankarani, H.M.: A survey and comparison of several friction force models for dynamic analysis of multibody mechanical systems. Nonlinear Dyn. 86(3), 1407–1443 (2016)

    Article  MathSciNet  Google Scholar 

  24. Bowden, F.P., Tabor, D.: Friction and Lubrication of Solids. Oxford Univ. Press, London (1950)

    MATH  Google Scholar 

  25. Rubenstein, C.: A general theory of the surface friction of solids. Proc. Phys. Soc. B 69, 921 (1956)

    Article  Google Scholar 

  26. Archard, J.F.: Elastic deformation and the laws of friction. Proc. R. Soc. A 243(1233), 190–205 (1957)

    Article  Google Scholar 

  27. Suh, N.P., Sin, H.C.: The genesis of friction. Wear 69(1), 91–114 (1981)

    Article  Google Scholar 

  28. Curnier, A.: A theory of friction. Int. J. Solids Struct. 20(7), 637–647 (1984)

    Article  MATH  Google Scholar 

  29. Zhang, J., Moslehy, F.A., Rice, S.L.: A model for friction in quasi-steady-state sliding. Wear 149(1–2), 1–25 (1991)

    Article  Google Scholar 

  30. Straffelini, G.: A simplified approach to the adhesive theory of friction. Wear 249(1–2), 78–84 (2001)

    Article  Google Scholar 

  31. Berger, E.J.: Friction modeling for dynamic system simulation. Appl. Mech. Rev. 55(6), 535–577 (2002)

    Article  Google Scholar 

  32. Martins, J.A., Faria, L.O., Guimarães, J.: Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions. J. Vib. Acoust. 117, 445–451 (1995)

    Article  Google Scholar 

  33. Bigoni, D.: Nonlinear Solid Mechanics: Bifurcation Theory and Material Instability. Cambridge University Press, Cambridge (2012). ISBN 978-1107025417

    Book  MATH  Google Scholar 

  34. Rice, J.R., Ruina, A.L.: Stability of steady frictional slipping. J. Appl. Mech. 50(2), 343–349 (1983)

    Article  MATH  Google Scholar 

  35. Flint, J., Hultén, J.: Lining-deformation-induced modal coupling as squeal generator in a distributed parameter disk brake model. J. Sound Vib. 254, 1–21 (2002)

    Article  Google Scholar 

  36. Rabinowicz, E.: Stick and slip. Sci. Am. 194, 109–118 (1956)

    Article  Google Scholar 

  37. Awrejcewicz, J., Olejnik, P.: Occurrence of stick-slip phenomenon. J. Theor. Appl. Mech. 35, 33–40 (2007)

    Google Scholar 

  38. Berger, E.J., Mackin, T.J.: On the walking stick-slip problem. Tribol. Int. 75, 51–60 (2014)

    Article  Google Scholar 

  39. Flores, P., Ambrosio, J., Claro, J.C.P.: Dynamic analysis for planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 47–74 (2004)

    Article  MATH  Google Scholar 

  40. Stefanelli, R., Valentini, P.P., Vita, L.: Modelling hydrodynamic journal bearing in 3D multibody systems. In: Proceedings of ASME-IDETC/CIE 2005, Long Beach, California, USA, Sept. 24–28 (2005)

    Google Scholar 

  41. Feng, X., Bai, W.: Hydrodynamic analysis of marine multibody systems by a nonlinear coupled model. J. Fluids Struct. 70, 72–101 (2017)

    Article  Google Scholar 

  42. Wu, X.D., Zuo, S.G., Lei, L., Yang, X.W., Li, Y.: Parameter identification for a LuGre model based on steady-state tire conditions. Int. J. Automot. Technol. 12(5), 671–677 (2011)

    Article  Google Scholar 

  43. Yoon, J.Y., Trumper, D.L.: Friction modeling, identification, and compensation based on friction hysteresis and Dahl resonance. Mechatronics 24, 734–741 (2014)

    Article  Google Scholar 

  44. Piatkowski, T.: Dahl and LuGre dynamic friction models—the analysis of selected properties. Mech. Mach. Theory 73, 91–100 (2014)

    Article  Google Scholar 

  45. Sun, Y.-H., Chen, T., Wu, C.Q., Shafai, C.: A comprehensive experimental setup for identification of friction model parameters. Mech. Mach. Theory 100, 338–357 (2016)

    Article  Google Scholar 

  46. Piatkowski, T., Wolski, M.: Analysis of selected friction properties with the Froude pendulum as an example. Mech. Mach. Theory 119, 37–50 (2018)

    Article  Google Scholar 

  47. Canudas de Wit, C., Olsson, H., Åström, K.J., Lischinsky, P.: A new model for control of systems with friction. IEEE Trans. Autom. Control 40, 419–425 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  48. Do, N.B., Ferri, A.A., Bauchau, O.A.: Efficient simulation of a dynamic system with LuGre friction. J. Comput. Nonlinear Dyn. 2, 281–289 (2007)

    Article  Google Scholar 

  49. Saha, A., Wahi, P., Wiercigroch, M., Stefański, A.: A modified LuGre friction model for an accurate prediction of friction force in the pure sliding regime. Int. J. Non-Linear Mech. 80, 122–131 (2016)

    Article  Google Scholar 

  50. Wojtyra, M.: Comparison of two versions of the LuGre model under conditions of varying normal force. In: ECCOMAS Thematic Conference on Multibody Dynamics, Prague, Czech Republic, (2017), 10 pp.

    Google Scholar 

  51. Halme, J., Andersson, P.: Rolling contact fatigue and wear fundamentals for rolling bearing diagnostics. Proc. Inst. Mech. Eng., Part J J. Eng. Tribol. 224, 377–393 (2009)

    Article  Google Scholar 

  52. Threlfall, D.C.: The inclusion of Coulomb friction in mechanisms programs with particular reference to DRAM au programme DRAM. Mech. Mach. Theory 13, 475–483 (1978)

    Article  Google Scholar 

  53. Ambrósio, J.A.C.: Impact of rigid and flexible multibody systems: deformation description and contact model. Virtual Nonlinear Multibody Syst. 103, 57–81 (2003)

    Article  MATH  Google Scholar 

  54. Andersson, S., Söderberg, A., Björklund, S.: Friction models for sliding dry, boundary and mixed lubricated contacts. Tribol. Int. 40, 580–587 (2007)

    Article  Google Scholar 

  55. Tustin, A.: The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems. J. Inst. Electr. Eng. 94, 143–151 (1947)

    Google Scholar 

  56. Hess, D.P., Soom, A.: Friction at a lubricated line contact operating at oscillating sliding velocities. J. Tribol. 112, 147–152 (1990)

    Article  Google Scholar 

  57. Popp, K., Stelter, P.: Nonlinear oscillations of structures induced by dry friction. In: Nonlinear Dynamics in Engineering Systems, pp. 233–240 (1990)

    Chapter  Google Scholar 

  58. Armstrong-Hélouvry, B.: Control of Machines with Friction. Kluwer Academic Publishers, Norwell (1991)

    Book  MATH  Google Scholar 

  59. Makkar, C., Dixon, W.E., Sawyer, W.G., Hu, G.: A new continuously differentiable friction model for control systems design. In: Proceedings of the 2005 IEEE/ASME, International Conference on Advanced Intelligent Mechatronics, pp. 600–605 (2005)

    Chapter  Google Scholar 

  60. Specker, T., Buchholz, M., Dietmayer, K.: A new approach of dynamic friction modelling for simulation and observation. In: 19th World Congress of the International Federation of Automatic Control, Cape Town, South Africa, Aug. 24–29, pp. 4523–4528 (2014)

    Google Scholar 

  61. Brown, P., McPhee, J.: A continuous velocity-based friction model for dynamics and control with physically meaningful parameters. J. Comput. Nonlinear Dyn. 11(5), 054502 (2016)

    Article  Google Scholar 

  62. Bowden, F.P., Leben, L.: The nature of sliding and the analysis of friction. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 169, 371–391 (1939)

    Article  Google Scholar 

  63. Johannes, V.I., Green, M.A., Brockley, C.A.: The role of the rate of application of the tangential force in determining the static friction coefficient. Wear 24, 381–385 (1973)

    Article  Google Scholar 

  64. Dahl, P.R.: A solid friction model. Technical report. The Aerospace Corporation, El Segundo, California (1968)

  65. Dahl, P.R.: Solid friction damping in mechanical vibrations. AIAA J. 14, 1675–1682 (1976)

    Article  Google Scholar 

  66. Lampaert, V., Al-Bender, F., Swevers, J.: A generalized Maxwell-slip friction model appropriate for control purposes. In: Proceedings of IEEE International Conference on Physics and Control, St. Petersburg, Russia, pp. 1170–1178 (2003)

    Google Scholar 

  67. Al-Bender, F., Lampaert, V., Swevers, J.: The generalized Maxwell-slip model: a novel model for friction simulation and compensation. IEEE Trans. Autom. Control 50, 1883–1887 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  68. Nikravesh, P.E.: Computer Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  69. Marques, F., Souto, A.P., Flores, P.: On the constraints violation in forward dynamics of multibody systems. Multibody Syst. Dyn. 39(4), 385–419 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  70. Baumgarte, J.: Stabilization of constraints and integrals of motion in dynamical systems. Comput. Methods Appl. Mech. Eng. 1, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  71. Flores, P., Machado, M., Seabra, E., Silva, M.T.: A parametric study on the Baumgarte stabilization method for forward dynamics of constrained multibody systems. J. Comput. Nonlinear Dyn. 6(1), 0110191 (2011)

    Google Scholar 

  72. Haug, E.J., Wu, S.C., Yang, S.M.: Dynamics of mechanical systems with Coulomb friction, stiction, impact, and constraints addition, deletion—I theory. Mech. Mach. Theory 21(5), 401–406 (1986)

    Article  Google Scholar 

  73. Wu, S.C., Yang, S.M., Haug, E.J.: Dynamics of mechanical systems with Coulomb friction, stiction, impact, and constraints addition, deletion—II planar systems. Mech. Mach. Theory 21(5), 407–416 (1986)

    Article  Google Scholar 

  74. Wu, S.C., Yang, S.M., Haug, E.J.: Dynamics of mechanical systems with Coulomb friction, stiction, impact, and constraints addition, deletion—II spatial systems. Mech. Mach. Theory 21(5), 417–425 (1986)

    Article  Google Scholar 

  75. Frączek, J., Wojtyra, M.: On the unique solvability of a direct dynamics problem for mechanisms with redundant constraints and Coulomb friction in joints. Mech. Mach. Theory 46(3), 312–334 (2011)

    Article  MATH  Google Scholar 

  76. Haug, E.J.: Simulation of friction and stiction in multibody dynamics model problems. Mech. Based Des. Struct. Mach. 46(3), 296–317 (2018)

    Article  Google Scholar 

  77. Wojtyra, M.: Modeling of static friction in closed-loop kinematic chains—uniqueness and parametric sensitivity problems. Multibody Syst. Dyn. 39(4), 337–361 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  78. Harlecki, A., Urbaś, A.: Modelling friction in the dynamics analysis of selected one-DOF spatial linkage mechanisms. Meccanica 52, 403–420 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  79. Pennestrì, E., Valentini, P.P., Vita, L.: Multibody dynamics simulation of planar linkages with Dahl friction. Multibody Syst. Dyn. 17(4), 321–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  80. Wojtyra, M.: On some problems with modeling of Coulomb friction in self-locking mechanisms. J. Comput. Nonlinear Dyn. 11(1), 011008 (2016)

    Article  Google Scholar 

  81. Gholami, F., Nasri, M., Kövecses, J., Teichmann, M.: A linear complementarity formulation for contact problems with regularized friction. Mech. Mach. Theory 105, 568–582 (2016)

    Article  Google Scholar 

  82. Flores, P., Ambrósio, J.: Revolute joints with clearance in multibody systems. Comput. Struct. 82(17–19), 1359–1369 (2004)

    Article  Google Scholar 

  83. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Google Scholar 

  84. Tian, Q., Flores, P., Lankarani, H.M.: A comprehensive survey of the analytical, numerical and experimental methodologies for dynamics of multibody mechanical systems with clearance or imperfect joints. Mech. Mach. Theory 122, 1–57 (2018)

    Article  Google Scholar 

  85. ISO 286-1:2010 (en). Geometrical product specifications (GPS)—ISO code system for tolerances on linear sizes—part 1: basis of tolerances, deviations and fits

Download references

Acknowledgements

The first author expresses his gratitude to the Portuguese Foundation for Science and Technology through the PhD grant (PD/BD/114154/2016), MIT Portugal Program. This work has been supported by the Portuguese Foundation for Science and Technology with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020—Programa Operacional Competitividade e Internacionalização (POCI) with the reference project POCI-01-0145-FEDER-006941.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipe Marques.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, F., Flores, P., Claro, J.C.P. et al. Modeling and analysis of friction including rolling effects in multibody dynamics: a review. Multibody Syst Dyn 45, 223–244 (2019). https://doi.org/10.1007/s11044-018-09640-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-018-09640-6

Keywords

Navigation