Skip to main content
Log in

Robust stability of hybrid Roesser models against parametric uncertainty: a general approach

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

This paper aims at proposing a general framework for the establishement of LMI conditions to analyse the robust stability of a singular hybrid Roesser model subject to parametric uncertainties. The uncertain parameters are involved through implicit Linear Fractional Representations (LFR). Special focus is put on the influence of the number of uncertain parameters and the dimensionality of the model. More precisely it is shown that each dimension can nearly be regarded as an uncertain parameter and the other way around. Therefore, their influence on the conservatism of the obtained condition is very similar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agathoklis, P. (1988). Lower bounds for the stability margin of discrete two-dimensional systems based on the two-dimensional Lyapunov equation. IEEE Transactions on Circuits and Systems, 35(6), 745–749.

    Article  MathSciNet  Google Scholar 

  • Bachelier, O., & Mehdi, D. (2006). Robust matrix root-clustering through extended KYP lemma. SIAM Journal of Control and Optimization, 45(1), 368–381.

    Article  MathSciNet  MATH  Google Scholar 

  • Bachelier, O., Paszke, W., & Mehdi, D. (2008). On the Kalman-Yakubovih-Popov lemma and the multidimensional models. Multidimensional Systems and Signal Processing, 19(3–4), 425–447.

    Article  MathSciNet  MATH  Google Scholar 

  • Bochniak, J., & Gałkowski, K. (2005). LMI-based analysis for continuous-discrete linear shift invariant nD-systems. Journal of Circuits, Systems and Computers, 14(2), 1–26.

    Article  Google Scholar 

  • Bose, N. K. (1982). Applied multidimensional systems theory. New York: Van Nostrand-Reinhold.

    MATH  Google Scholar 

  • Boyd, S., El Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory, volume 15 of SIAM studies in applied and numerical mathematics. Philadelphia: SIAM.

    Book  Google Scholar 

  • Bracewell, R. N. (1995). Two-dimensional Imaging. Prentice Hall Signal Processing Series. Upper Saddle River: Prentice Hall Inc.

    Google Scholar 

  • Dinh, M., Scorletti, G., Fromion, V., & Magarotto, E. (2005). Parameter dependent H\(_{\infty }\) control by finite dimensional LMI optimization: Application to trade-off dependent control. International Journal of Robust and Nonlinear Control, 15, 383–406.

    Article  MathSciNet  MATH  Google Scholar 

  • Dudgeon, D. E., & Merserau, R. M. (1984). Multidimensional digital signal processing. Englewood Cliffs: Prentice-Hall Signal Processing Series. Prentice Hall.

    MATH  Google Scholar 

  • Ebihara, Y., Ito, Y., & Hagiwara, T. (2006). Exact stability analysis of 2-D systems using LMIs. IEEE Transactions on Automatic Control, 51(9), 1509–1513.

    Article  MathSciNet  Google Scholar 

  • Finsler, P. (1937). Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formen: Comment. Mathematici Helvetici, 9, 188–192.

    Article  MathSciNet  Google Scholar 

  • Fornasini, E., & Marchesini, G. (1978). Doubly indexed dynamical systems: State models and structural properties. Mathematical Systems Theory, 12, 59–72.

    Article  MathSciNet  MATH  Google Scholar 

  • Gałkowski, K. (2000). A perspective on singularity in 2D linear systems. Multidimensional Systems and Signal Processing, 11(1–2), 83–108.

    Article  MathSciNet  MATH  Google Scholar 

  • Gałkowski, K., Lam, J., Xu, S., & Lin, Z. (2003). LMI approach to state-feedback stabilization of multidimensional systems. International Journal of Control, 76(14), 1428–1436.

    Article  MathSciNet  MATH  Google Scholar 

  • Gałkowski, K., & Wood, J. (Eds.). (2001). Multidimensional signals, circuits and systems. Systems and control book series. London: Taylor and Francis.

    Google Scholar 

  • Hecker, S., & Varga, A. (2004). Generalized LFT-based representation of parametric models. European Journal of Control, 10(4), 326–337.

    Article  MathSciNet  Google Scholar 

  • Henrion, D., Ŝebek, M., & Bachelier, O. (2001). Rank-one LMI approach to stability of 2-D polynomial matrices. Multidimensional Systems and Signal Processing, 12(1), 33–48.

    Article  MathSciNet  MATH  Google Scholar 

  • Hinamoto, T. (1993). 2-D Lyapunov equation and filter design based on the Fornasini-Marchesini second model. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 40(2), 102–110.

    Article  MATH  Google Scholar 

  • Iwasaki, T., & Hara, S. (2005). Generalized KYP lemma: unified frequency domain inequalities with design applications. IEEE Transactions on Automatic Control, 50(1), 41–59.

    Article  MathSciNet  Google Scholar 

  • Jury, E. (1978). Stability of multidimensional scalar and matrix polynomial. Proceedings of the IEEE, 66(9), 1018–1047.

    Article  MathSciNet  Google Scholar 

  • Kaczorek, T. (1985). Two-dimensional linear systems, volume 68 of Lecture Notes in Control and Information Sciences. Berlin: Springer.

    Google Scholar 

  • Kaczorek, T. (1988a). The singular general model of 2-D systems and its solution. IEEE Transactions on Automatic Control, 33(11), 1060–1061.

    Article  MathSciNet  MATH  Google Scholar 

  • Kaczorek, T. (1988b). Singular multidimensional linear discrete systems. In Proceedings of IEEE international symposium on circuits and systems. Helsinki, Finland, June 1988b, pp. 105–108.

  • Kaczorek, T. (1990). General response formula and minimum energy control for the general singular model of 2-d systems. IEEE Transactions on Automatic Control, 35(4), 433–436.

    Article  MathSciNet  MATH  Google Scholar 

  • Kaczorek, T. (1992). Linear control systems, vol. 2. New York: Research Studies Press, Wiley.

    Google Scholar 

  • Kaczorek, T. (2000). Positive 1D and 2D systems. Communications and control engineering. London: Springer.

    Google Scholar 

  • Kaczorek, T. (2008). Positive fractional 2D hybrid linear systems. Bulletin of the Polish Academy of Sciences—Technical Sciences, 56(3), 273–277.

    Google Scholar 

  • Kaczorek, T. (2009). LMI approach to stability of 2d positive systems. Multidimensional Systems and Signal Processing, 20(1), 39–54.

    Article  MathSciNet  MATH  Google Scholar 

  • Kaczorek, T. (2011). Selected problems of fractional systems theory. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Lu, W.-S. (1994). On a Lyapunov approach to stability analysis of 2-D digital filters. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 41(10), 665–669.

    Article  Google Scholar 

  • Lu, W.-S., & Antoniou, A. (1992). Two-dimensional digital filters, vol. 80 of electrical engineering and elecronics. New York: Marcel Dekker, Inc.

    Google Scholar 

  • Manceaux-Cumer, C., & Chrétien, J.-P. (2001). Minimal LFT form of a spacecraft built up from two bodies. In AIAA Guidance, navigation, and control conference. Quebec, Canada, , pp. 105–108, August 2001.

  • Peaucelle, D., Arzelier, D., Henrion, D., & Gouaisbault, F. (2007). Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation. Automatica, 43, 796–804.

    Article  Google Scholar 

  • Piekarski, M. (1977). In Algebraic characterization of matrices whose multivariable characteristic polynomial is Hurwitzian. In Proceedings of international symposium Operator Theory. Lubbock, USA.

  • Rafajlowicz, E., & Rafajlowicz, W. (2011). \((n+r)\)D systems and their control with reduced sensitivity to parametric uncertainties. In Proceedings of 7th international workshop on multidimensional systems (nDS’2011). Poitiers, France.

  • Rantzer, A. (1996). On the Kalman-Yakubovich-Popov lemma. Systems and Control Letters, 28(1), 7–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Roesser, R. P. (1975). A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control, 20(1), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Rogers, E., Gałkowski, K., & Owens, D. H. (2007). Control systems theory and applications for linear repetitive processes, vol. 349 of Lecture Notes in Control and Information Sciences. Berlin: Springer.

    Google Scholar 

  • Sari, B., Bachelier, O., & Mehdi, D. (2011). Robust S-regularity of matrix pencils applied to the analysis of descriptor models. Linear Algebra and its Applications, 435(5), 923–942.

    Article  MathSciNet  MATH  Google Scholar 

  • Scherer, C. W. (2001). LPV control and full block multipliers. Automatica, 37, 361–375.

    Article  MathSciNet  MATH  Google Scholar 

  • Shi, Y. Q., & Zhang, X. M. (2002). A new two-dimensional interleaving technique using successive packing. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 49(6), 779–789.

    Article  MathSciNet  Google Scholar 

  • Willems, J. C. (1971). Least squares stationary optimal control and the algebraic Riccati equation. IEEE Transactions on Automatic Control, 16(6), 621–634.

    Article  MathSciNet  Google Scholar 

  • Xu, H., Lin, Z., & Makur, A. (2010). Non-fragile H\(_2\) and H\(_{\infty }\) filter designs for polytopic two-dimensional systems in Roesser model. Multidimensional Systems and Signal Processing, 31(3), 255–275.

    Article  MathSciNet  Google Scholar 

  • Yakubovich, V. A. (1971). S-procedure in nonlinear control theory. Vestnik Leningrad University, 1, 62–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bachelier.

Appendices

A Some useful properties of implicit LFR

In this appendix, we focus a little on the properties of implicit LFRs. We only give the three properties that are useful in the body of the paper.

Let three implicit LFRs be given:

$$\begin{aligned} M_1&= \Delta _1\star \left[\begin{array}{c@{\quad }c} A_1&B_1\\ C_1&D_1\\ E_1&F_1 \end{array}\right],\end{aligned}$$
(45)
$$\begin{aligned} M_2&= \Delta _2\star \left[\begin{array}{c@{\quad }c} A_2&B_2\\ C_2&D_2\\ E_2&F_2 \end{array}\right].\end{aligned}$$
(46)
$$\begin{aligned} M&= \bar{\Delta }\star \left[\begin{array}{c@{\quad }c} \bar{A}&\bar{B}\\ C&D\\ \bar{E}&\bar{F}\\ \end{array}\right], \end{aligned}$$
(47)

with \(\bar{\Delta }\) a block diagonal matrix which satisfies

$$\begin{aligned} \bar{\Delta }=T^{-1}\Delta T, \end{aligned}$$
(48)

where \(\Delta \) is also a block diagonal matrix and where \(T\) is a matrix which enables the permuation of the blocks in \(\Delta \) to get \(\bar{\Delta }\). Then it comes:

Summation:

$$\begin{aligned} M_1+M_2=\left[\begin{array}{cc} \Delta _1&0\\ 0&\Delta _2 \end{array}\right] \star \left[\begin{array}{c@{\quad }c|c} A_1&0&B_1\\ 0&A_2&B_2\\ \hline C_1&C_2&D_1+D_2\\ \hline E_1&0&F_1\\ 0&E_2&F_2 \end{array}\right]. \end{aligned}$$
(49)

Multiplication:

$$\begin{aligned} M_1M_2=\left[\begin{array}{cc} \Delta _1&0\\ 0&\Delta _2 \end{array}\right] \star \left[\begin{array}{c@{\quad }c|c} A_1&B_1C_2&B_1D_2\\ 0&A_2&B_2\\ \hline C_1&D_1C_2&D_1D_2\\ \hline E_1&F_1C_2&F_1D_2\\ 0&E_2&F_2 \end{array}\right]. \end{aligned}$$
(50)

Block permutation:

$$\begin{aligned} M=\Delta \star \left[\begin{array}{c@{\quad }c} A&B\\ C&D\\ E&F\\ \end{array}\right], \end{aligned}$$
(51)

with

$$\begin{aligned} \left[\begin{array}{c@{\quad }c} A&B\\ E&F \end{array}\right]= \left[\begin{array}{c@{\quad }c} T&0\\ 0&T \end{array}\right] \left[\begin{array}{c@{\quad }c} \bar{A}&\bar{B}\\ \bar{E}&\bar{F} \end{array}\right] \end{aligned}$$
(52)

Descriptor concrete S-procedure

In this appendix, we first recall the abstract full block S-procedure (Yakubovich 1971) formulated about in the same way as in Scherer (2001) and then we make it more concrete by specializing it to the case where implicit LFRs are involved.

Theorem 3

(Scherer 2001) Let the following mathematical objects be introduced :

  • \(\mathbb{\nabla }\), a compact set of complex matrices \({\Delta }\);

  • An Hermitian matrix \(\Theta \);

  • A matrix \(V\in \mathbb{R }^{l\times n}\);

  • \({\fancyscript{S}}({\Delta })\), a family of subspaces \(\mathbb C ^l\) continuously depending on \({\Delta }\) over \(\mathbb{\nabla }\);

  • \({\fancyscript{B}}({\Delta })=\displaystyle \{x\in \mathbb C ^n : Vx\in {\fancyscript{S}}({\Delta })\},\,\,{\Delta }\in \mathbb{\nabla }\).

Then the next two statements are equivalent :

  • a)

    $$\begin{aligned} x^{\prime }\Theta x<0\quad \forall x\in {\fancyscript{B}}(\Delta )\backslash \{0\},\quad \forall {\Delta }\in \mathbb{\nabla }. \end{aligned}$$
    (53)
  • b)

    $$\begin{aligned} \exists {X}:\displaystyle \left\{ \begin{array}{lcr} V^{\prime }{X}V+\Theta <0\\ ~\\ z^{\prime }{X}z\ge 0&\,&\forall z\in {\fancyscript{S}}({\Delta }),\forall {\Delta }\in \mathbb{\nabla } \end{array}\right. \end{aligned}$$
    (54)

Corollary 1

Let \(\mathbb{X }\) be set of multipliers \(X\) which enables the characaterization of a compact set of matrices \(\Delta \) defined as follows:

$$\begin{aligned} {\nabla }=\displaystyle \left\{ {\Delta }\,:\, \left[\begin{array}{c} {\Delta }\\ I \end{array}\right]^{\prime }{X}\left[\begin{array}{c} {\Delta }\\ I \end{array}\right]\ge 0,\,\,\forall {X}\in \mathbb{X }. \right\} \end{aligned}$$
(55)

Then the two following statements are equivalent:

  • i) \(\forall \Delta \in \mathbb{\nabla },\)

    $$\begin{aligned} \left[\begin{array}{c} (E-{\Delta }A)^{-1}\quad ({\Delta }B-F)\\ I \end{array}\right]^{\prime }\Theta \left[\begin{array}{c} (E-{\Delta }A)^{-1}\quad ({\Delta }B-F)\\ I \end{array}\right]<0, \end{aligned}$$
    (56)
  • ii)

    $$\begin{aligned} \exists X\in \mathbb{X }: \left[\begin{array}{c@{\quad }c} E&F\\ A&B \end{array}\right]^{\prime }{X}\left[\begin{array}{c@{\quad }c} E&F\\ A&B \end{array}\right]+\Theta <0. \end{aligned}$$
    (57)

Proof

This is an application of Theorem 3. Indeed Assume that the subspace \({\fancyscript{S}}(\Delta )\) is defined as

$$\begin{aligned} {\fancyscript{S}}(\Delta )=\text{ Ker}\left(\left[\begin{array}{cc} I&-\Delta \end{array}\right]\right), \end{aligned}$$
(58)

where \(\text{ Ker}(.)\) denotes the right nullspace of a matrix. The elements of \({\fancyscript{S}}(\Delta )\) can be characterized by

$$\begin{aligned} z=\left[\begin{array}{c} \Delta \\ I \end{array}\right]q,\quad q\in \mathbb{C }^{2\mu }. \end{aligned}$$
(59)

Therefore, with such a characterization, the definition of \({\nabla }\) in (55) is such that it makes the second inequality in (54) verified. Indeed, it becomes the definition of \(\nabla \) itself. Moreover, the matrix \(V\) is chosen as follows:

$$\begin{aligned} V=\left[\begin{array}{c@{\quad }c} E&F\\ A&B \end{array}\right]. \end{aligned}$$
(60)

Then for any vector \(x\) of the form

$$\begin{aligned} x=\left[\begin{array}{c} (E-{\Delta }A)^{-1}\quad ({\Delta }B-F)\\ I \end{array}\right]y, \end{aligned}$$
(61)

ones gets

$$\begin{aligned} \left[\begin{array}{cc} I&-\Delta \end{array}\right]Vx=0, \end{aligned}$$
(62)

which proves that \(Vx\) belongs to \({\fancyscript{S}}(\Delta )\) i.e. that \(x\) belongs to \({\fancyscript{B}}(\Delta )\) as defined in Theorem 3. Thus, applying Theorem 3 amounts to proving the equivalence between statements i) and ii). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghamgui, M., Yeganefar, N., Bachelier, O. et al. Robust stability of hybrid Roesser models against parametric uncertainty: a general approach. Multidim Syst Sign Process 24, 667–684 (2013). https://doi.org/10.1007/s11045-012-0213-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-012-0213-4

Keywords

Navigation