Skip to main content

Advertisement

Log in

An evolutionary computing enriched RS attack resilient medical image steganography model for telemedicine applications

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

The recent advancement in computing technologies and resulting vision based applications has given rise to a novel practice called telemedicine that requires patient diagnosis images or allied information to recommend or even perform diagnosis practices being located remotely. However, to ensure accurate and optimal telemedicine there is the requirement of seamless or flawless biomedical information about patient. On the contrary, medical data transmitted over insecure channel often remains prone to manipulated or corrupted by attackers. The existing cryptosystems alone are not sufficient to deal with these issues and hence in this paper a highly robust reversible image steganography model has been developed for secret information hiding. Unlike traditional wavelet transform techniques, we incorporated Discrete Ripplet Transformation technique for message embedding in the medical cover images. In addition to, ensure seamless communication over insecure channel, a dual cryptosystem model containing proposed steganography scheme and RSA cryptosystem has been developed. One of the key novelties of the proposed research work is the use of adaptive genetic algorithm for optimal pixel adjustment process that enriches data hiding capacity as well as imperceptibility features. The performance assessment reveals that the proposed steganography model outperforms other wavelet transformation based approaches in terms of high PSNR, embedding capacity, imperceptibility etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Dmour, H., & Al-Ani, A. (2015). Quality optimized medical image steganography based on edge detection and hamming code. In IEEE 12th international symposium on biomedical imaging (ISBI), New York, NY (pp. 1486–1489).

  • Al-Dmour, H., Al-Ani, A., & Nguyen, H. (2014). An efficient steganography method for hiding patient confidential information. In 2014 36th annual international conference of the IEEE engineering in medicine and biology society, Chicago, IL (pp. 222–225).

  • Barton, J. M. (1997). Method and apparatus for embedding authentication information within digital data. U.S. Patent 5646997.

  • Candes, E. J., & Donoho, D. L. (1999). Ridgelets: A key to higher dimensional intermittency? Philosophical Transactions of the Royal Society of London A, 357, 2459–2509.

    Article  MathSciNet  MATH  Google Scholar 

  • Candes, E. J., & Donoho, D. L. (2003). New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Communications on Pure and Applied Mathematics, 57(2), 219–266.

    Article  MATH  Google Scholar 

  • Candes, E., & Donoho, D. (2005a). Continuous curvelet transform: I. Resolution of the wavefront set. Applied and Computational Harmonic Analysis, 19(2), 162–197.

    Article  MathSciNet  MATH  Google Scholar 

  • Candes, E., & Donoho, D. (2005b). Continuous curvelet transform: II. Discretization and frames. Applied and Computational Harmonic Analysis, 19, 198–222.

    Article  MathSciNet  MATH  Google Scholar 

  • Celik, M. U., Sharma, G., Tekalp, A. M., & Saber, E. (2002). Reversible data hiding. In Proceedings of the international conference image processing (Vol. II, pp 157–160).

  • Chan, C. K., & Chang, L. M. (2004). Hiding data in images by simple LSB substitution. Pattern Recognition, 37, 469–474.

    Article  MATH  Google Scholar 

  • Cheddad, A., Condell, J., Curran, K., & Kevitt, P. (2010). Digital image steganography—Survey and analysis of current methods. Journal of Signal Processing, 90(3), 752–825.

    MATH  Google Scholar 

  • Chen, W. (2003). A comparative study of information hiding schemes using amplitude, frequency and phase embedding. Ph.D. thesis, National Cheng Kung University, Taiwan.

  • Das, A., Islam, S., Gupta, S., & Gupta, P. (2014). Data hiding in medical images. Journal of Computers, 9, 513–518.

    Google Scholar 

  • Das, S., & Kundu, M. K. (2011). Ripplet based multimodality Medical Image Fusion using Pulse-Coupled Neural Network and Modified Spatial Frequency. In International conference on recent trends in information systems, Kolkata (pp. 229–234).

  • Daubechies, I. (1992). Ten lectures on wavelets. Philadephia, PA: SIAM.

    Book  MATH  Google Scholar 

  • Deans, S. R. (1983). The radon transform and some of its applications. New York: Wiley.

    MATH  Google Scholar 

  • Dhaarani, C., Venugopal, D., & Raja, A. S. (2014) Medical image compression using ripplet transform. In International conference on intelligent computing applications, Coimbatore (pp. 233–238).

  • Do, M., & Vetterli, M. (2003). The finite ridgelet transform for image representation. IEEE Transactions on Image Processing, 12(1), 16–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L., & Duncan, M. R. (2000). Digital curvelet transform: strategy, implementation and experiments. In Proceedings of the aerosense wavelet applications VII (Vol. 4056, pp. 12–29). SPIE.

  • ElShafie, D. R., Kharma, N., & Ward, R. (2008). Parameter optimization of an embedded watermark using a genetic algorithm. In: International symposium on communications, control and signal processing, ISCCSP, St Julians, March 12–14, 2008 (pp 1263–1267).

  • Fard, A. M., Akbarzadeh, M. R., & Varasteh, A. F. (2006). A new genetic algorithm approach for secure JPEG steganography. In International conference on engineering of intelligence Systems (pp 1–6).

  • Gonzalez, R., & Woods, R. (2001). Digital image processing (2nd ed.). ‎Upper Saddle River: Prentice Hall, PHI.

    Google Scholar 

  • Hormander, L. (2003). The analysis of linear partial differential operators. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Hu, Y. (2008). difference expansion based reversible data hiding using two embedding directions. IEEE Transactions on Multimedia, 10(8), 1500–1512.

    Article  Google Scholar 

  • Jain, M., & Lenka, S. K. (2016). Diagonal queue medical image steganography with Rabin cryptosystem. Brain Informatics, 3(1), 39–51.

    Article  Google Scholar 

  • Jiao, S., & Goutte, R. (2010). A secure transmission of identification information in medical images by steganocryptography. IJCNS, 3, 801–804.

    Article  Google Scholar 

  • Karakış, R., Güler, İ., Çapraz, İ., & Bilir, E. (2015). A new method of fuzzy logic-based steganography for the security of medical images. In 23nd signal processing and communications applications conference (SIU), Malatya (pp. 272–275).

  • Kim, H. J., Sachnev, V., & Shi, Y. Q. (2008). A novel difference expansion transform for reversible data embedding. IEEE Transactions on Information Forensics and Security, 3(3), 456–465.

    Article  Google Scholar 

  • Kumar, A., & Sharma, R. (2013). A secure image steganography based on RSA algorithm and hash-LSB technique. IJARCSSE, 3, 363–372.

    Google Scholar 

  • Lavania, S., Matey, P. S., & Thanikaiselvan, V. (2014). Real-time implementation of steganography in medical images using integer wavelet transform. In IEEE international conference on computational intelligence and computing research, Coimbatore (pp. 1–5).

  • Liu, J., Tang, G., & Sun, Y. (2013). A secure steganography for privacy protection in healthcare system. Journal of Medical Systems, 37(2), 9918.

    Article  Google Scholar 

  • Luo, W., Huang, F., & Huang, J. (2010). Edge adaptive image steganography based on LSB matching revisited. IEEE Transactions on Information Forensics and Security, 5(2), 201–214.

    Article  Google Scholar 

  • Mallat, S. (1999). A wavelet tour of signal processing (2nd ed.). New York: Academic.

    MATH  Google Scholar 

  • Moerland, T. Steganography and steganalysis. Available: www.liacs.nl/home/tmoerl/privtech.pdf. Accessed Apr 2017.

  • Mohan, M., & Anurenjan, M. (2011). A novel data hiding method in image using contourlet transform. In Recent Advances in Intelligent Computational Systems (RAICS).

  • Ni, Z., Shi, Y. Q., Ansari, N., & Su, W. (2006). Reversible data hiding. IEEE Transactions on Circuits and Systems for Video Technology, 16(3), 354–362.

    Article  Google Scholar 

  • Pandey, V. (2012). Secure medical image transmission using combined approach of data-hiding, encryption and steganography. IJARCSSE, 2, 54–57.

    Google Scholar 

  • Prabakaran, G., Bhavani, R. D., & Rajeswari, P. S. (2013). Multi secure and robustness for medical image based steganography scheme. In International conference on circuits, power and computing technologies (ICCPCT), Nagercoil (pp. 1188–1193).

  • Raja, K. B., Kiran, K. K., Satish, K. N., Lashmi, M. S., Preeti, H., Venugopal, K. R., et al. (2007). Genetic algorithm based steganography using wavelets. In International conference on information system security, ICISS (Vol, 4812, pp. 51–63). Berlin: Springer.

  • Raja, K. B., Kumar, K. K., Kumar, S. N., Lashmi, M. S., Preeti, H., Venugopal, K. R., et al. (2007b). Genetic algorithm based steganography using wavelets. International Conference on Information System Security, 4812, 51–63.

    Article  Google Scholar 

  • Ranjbar, S., Zargari, F., & Ghanbari, M. (2013). A highly robust two-stage contourlet-based digital image watermarking method. Signal Processing: Image Communication, 28(10), 1526–1536.

    Google Scholar 

  • Rongrong, J., Hongxun, Y., Shaohui, L., Liang, W. (2006). Genetic algorithm based optimal block mapping method for LSB SUbstitution. In International conference on information hiding and multimedia signal processing (pp. 215–218).

  • Starck, J. L., Candes, E. J., & Donoho, D. L. (2002). The curvelet transform for imagedenoising. IEEE Transactions on Image Processing, 11, 670–684.

    Article  MathSciNet  MATH  Google Scholar 

  • Tai, W., Yeh, C., & Chang, C. (2009). Reversible data hiding based on histogram modification of pixel differences. IEEE Transactions on Circuits and Systems for Video Technology, 19(6), 906–910.

    Article  Google Scholar 

  • Tian, J. (2003). Reversible data embedding using A difference expansion. IEEE Transactions on Circuits and Systems for Video Technology, 13(8), 890–896.

    Article  Google Scholar 

  • Xu, J., Yang, L., & Wu, D. (2010). Ripplet: a new transform for image processing. The Journal of Visual Communication and Image Representation, 21(1), 627–639.

    Article  Google Scholar 

  • Yaşar, H., & Ceylan, M. (2016). A new method for extraction of image’s features: Complex discrete Ripplet-II transform. In 24th signal processing and communication application conference (SIU), Zonguldak (pp. 1673–1676).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romany F. Mansour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, R.F., Abdelrahim, E.M. An evolutionary computing enriched RS attack resilient medical image steganography model for telemedicine applications. Multidim Syst Sign Process 30, 791–814 (2019). https://doi.org/10.1007/s11045-018-0575-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0575-3

Keywords

Navigation