Skip to main content

Advertisement

Log in

A Review of the Ultrastructural Features of Superficial Candidiasis

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Commensal yeast Candida causes opportunistic infections ranging from superficial lesions to disseminated mycoses in compromised patients. Superficial candidiasis, the commonest form of candidal infections, primarily affects the mucosa and the skin where Candida lives as a commensal. Conversion of candidal commensalism into opportunism at the fungal–epithelial interface is still ill-defined. Nevertheless, fungal virulence mechanisms such as adhesion to epithelia, morphogenesis, production of secretory hydrolytic enzymes, and phenotypic switching are thought to contribute in the process of pathogenesis. On the other hand, host responses in terms of immunity and local epithelial responses are actively involved in resisting the fungal challenge at the advancing front of the infection. Ultrastructural investigations using electron microscopy along with immunohistochemistry, cytochemistry, etc. have helped better viewing of Candida–host interactions. Thus, studies on the ultrastructure of superficial candidiasis have revealed a number of fungal behaviors and associated host responses such as adhesion, morphogenesis (hyphae and appresoria formation), thigmotropism, production and distribution of extracellular enzymes, phagocytosis, and epithelial changes. The purpose of this review is to sum up most of the ultrastructural findings of Candida–host interactions and to delineate the important pathological processes underlying superficial candidiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAM:

Chick chorio-allantoic membrane

HIV:

Human immunodeficiency virus

ICMS:

Intracytoplasmic membrane structures

ICMT:

Intracytoplasmic membrane tubules

PL:

Phospholipase

PLB:

Phospholipase B

PMNL:

Polymorphoneuclear leukocytes

SAP:

Secretory aspartyl proteinase

SEM:

Scanning electron microscope

TEM:

Transmission electron microscope

References

  1. Jayatilake JAMS, Tilakaratne WM, Panagoda GJ. Candidal onychomycosis: a mini-review. Mycopathologia. 2009;168:165–73.

    Article  PubMed  CAS  Google Scholar 

  2. Samaranayake LP, Holmstrup P. Oral candidiasis and human immunodeficiency virus infection. J Oral Pathol Med. 1989;18:554–64.

    Article  PubMed  CAS  Google Scholar 

  3. Samaranayake LP, Cheung LK, Samaranayake YH. Candidiasis and other fungal diseases of the mouth. Deramatol Ther. 2002;15:251–69.

    Article  Google Scholar 

  4. Samaranayake LP. Essential microbiology for dentistry. 3rd ed. London: Churchill Livingstone; 2006.

    Google Scholar 

  5. Ruhnke M. Skin and mucous membrane infections. In: Calderone RA, editor. Candida and candidiasis. Washington, DC: ASM Press; 2002. p. 307–26.

    Google Scholar 

  6. Kurtzman CP. Discussion of teleomorphic and anamorphic ascomycetous yeasts and a key to genera. In: Kurtzman CP, Fell JW, editors. The yeasts—a taxonomic study. Amsterdam, The Netherlands: Elsevier Science BV; 1998. p. 111–21.

    Google Scholar 

  7. Samaranayake YH, Samaranayake LP. Candida krusei: biology, epidemiology, pathogenicity and clinical manifestations of an emerging pathogen. J Med Microbiol. 1994;41:295–310.

    Article  PubMed  CAS  Google Scholar 

  8. Odds FC. Candida and candidosis. London: Bailliere Tindall; 1988.

    Google Scholar 

  9. Staib P, Morschhauser J. Chlamydospore formation on Staib agar as a species-specific characteristic of Candida dubliniensis. Mycoses. 1999;42:521–4.

    Article  PubMed  CAS  Google Scholar 

  10. Kobayashi SD, Cutler JE. Candida albicans hyphal formation and virulence: is there a clearly defined role? Trends Microbiol. 1998;6:92–4.

    Article  PubMed  CAS  Google Scholar 

  11. Odds FC. Pathogenic fungi in the 21st century. Trends Microbiol. 2000;8:200–1.

    Article  PubMed  CAS  Google Scholar 

  12. De Nollin S, Thone F, Borgers M. Enzyme cytochemistry of Candida albicans. J Histochem Cytochem. 1975;23:758–65.

    PubMed  Google Scholar 

  13. Osumi M. The ultrastructure of yeast: cell wall structure and formation. Micron. 1998;29:207–33.

    Article  PubMed  CAS  Google Scholar 

  14. Rajasingham KC. TEM studies of oral and vaginal candidosis. Microsc Anal. 1993;37:15–7.

    Google Scholar 

  15. Stoetzner H, Kemmer C. The morphology of Candida albicans in human candidosis. A light and electron microscopic study. Mykosen. 1975;18:511–8.

    PubMed  CAS  Google Scholar 

  16. Vitkov L, Weitgasser R, Hannig M, Fuchs K, Krautgartner WD. Candida-induced stomatopyrosis and its relation to diabetes mellitus. J Oral Pathol Med. 2003;32:46–50.

    Article  PubMed  Google Scholar 

  17. Marrie TJ, Costerton JW. The ultrastructure of Candida albicans infections. Can J Microbiol. 1981;27:1156–64.

    Article  PubMed  CAS  Google Scholar 

  18. Akashi T, Homma M, Kanbe T, Tanaka K. Ultrastructure of proteinase-secreting cells of Candida albicans studied by alkaline bismuth staining and immunocytochemistry. J Gen Microbiol. 1993;139:2185–95.

    PubMed  CAS  Google Scholar 

  19. Pugh D, Cawson RA. The cytochemical localization of phospholipase A and lysophospholipase in Candida albicans. Sabouraudia. 1975;13:110–5.

    Article  PubMed  Google Scholar 

  20. Pugh D, Cawson RA. The cytochemical localization of phospholipase-A and lysophospholipase in Candida albicans infecting the chick chorio-allantoic membrane. Sabouraudia. 1977;15:29–35.

    Article  PubMed  CAS  Google Scholar 

  21. Schaller M, Hube B, Ollert MW, Schafer W, Borg-von Zepelin M, Thoma-Greber E, et al. In vivo expression and localization of Candida albicans secreted aspartyl proteinases during oral candidiasis in HIV-infected patients. J Invest Dermatol. 1999;112:383–6.

    Article  PubMed  CAS  Google Scholar 

  22. Leidich SD, Ibrahim AS, Fu Y, Koul A, Jessup C, Vitullo J, et al. Cloning and disruption of caPLB1, a phospholipase-B gene involved in the pathogenicity of Candida albicans. J Biol Chem. 1998;273:26078–86.

    Article  PubMed  CAS  Google Scholar 

  23. Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 2000;13:122–43.

    Article  PubMed  CAS  Google Scholar 

  24. Cassone A, Simonetti N, Strippoli V. Ultrastructural changes in the wall during germ-tube formation from blastospores of Candida albicans. J Gen Microbiol. 1973;77:417–26.

    PubMed  CAS  Google Scholar 

  25. Scherwitz C, Martin R, Ueberberg H. Ultrastructural investigations of the formation of Candida albicans germ tubes and septa. Sabouraudia. 1978;16:115–24.

    Article  PubMed  CAS  Google Scholar 

  26. Kennedy MJ. Adhesion and association mechanisms of Candida albicans. Curr Top Med Mycol. 1988;2:73–169.

    PubMed  CAS  Google Scholar 

  27. Cannon RD, Chaffin WL. Oral colonization by Candida albicans. Crit Rev Oral Biol Med. 1999;10:359–83.

    Article  PubMed  CAS  Google Scholar 

  28. Howlett JA, Squier CA. Candida albicans ultrastructure: colonization and invasion of oral epithelium. Infect Immun. 1980;29:252–60.

    PubMed  CAS  Google Scholar 

  29. Rajasingham KC, Cawson RA. Plasmalemmasomes and lomasomes in Candida albicans. Cytobios. 1984;40:21–5.

    PubMed  CAS  Google Scholar 

  30. Rajasingham KC, Challacombe SJ. Intracytoplasmic membrane configurations, vesicles and vesicular inclusions in Candida albicans. Cytobios. 1988;53:7–17.

    PubMed  CAS  Google Scholar 

  31. Rajasingham KC, Cawson RA. Ultrastructural study of glycogen in Candida albicans. Microbios. 1980;27:163–6.

    PubMed  CAS  Google Scholar 

  32. Barnes WG, Flesher A, Berger AE, Arnold JD. Scanning electron microscopic studies of Candida albicans. J Bacteriol. 1971;106:276–80.

    PubMed  CAS  Google Scholar 

  33. Slutsky B, Buffo J, Soll DR. High-frequency switching of colony morphology in Candida albicans. Science. 1985;230:666–9.

    Article  PubMed  CAS  Google Scholar 

  34. Joshi KR, Gavin JB, Wheeler EE. A scanning electron microscopic study of the morphogenesis of Candida albicans in vitro. Sabouraudia. 1973;11:263–6.

    Article  PubMed  CAS  Google Scholar 

  35. Shannon JL. Scanning and transmission electron microscopy of Candida albicans chlamydospores. J Gen Microbiol. 1981;125:199–203.

    PubMed  CAS  Google Scholar 

  36. Montes LF, Wilborn WH. Ultrastructural features of host-parasite relationship in oral candidiasis. J Bacteriol. 1968;96:1349–56.

    PubMed  CAS  Google Scholar 

  37. Rajasingham KC, Challacombe SJ. Processes involved in the invasion of host epithelial cells by candidal hyphae. Microbios Lett. 1987;36:157–63.

    Google Scholar 

  38. Rajasingham KC, Challacombe SJ. An ultrastructural evaluation of the reaction of the host cell membrane to the invasive phase of Candida albicans. Cytobios. 1992;70:115–22.

    PubMed  CAS  Google Scholar 

  39. Mohamed AMH. Ultrastructural aspects of chronic oral candidosis. J Oral Pathol. 1975;4:180–94.

    Article  PubMed  CAS  Google Scholar 

  40. Mc Millan MD, Cowell VM. Effects of chronic Candida albicans in the hamster cheek pouch. Oral Surg Oral Med Oral Pathol. 1992;74:492–8.

    Article  CAS  Google Scholar 

  41. Schaller M, Schackert C, Korting HC, Januschke E, Hube B. Invasion of Candida albicans correlates with expression of secreted aspartic proteinases during experimental infection of human epidermis. J Invest Dermatol. 2000;114:712–7.

    Article  PubMed  CAS  Google Scholar 

  42. Jayatilake JAMS, Samaranayake YH, Samaranayake LP. An ultrastructural and a cytochemical study of candidal invasion of reconstituted human oral epithelium. J Oral Pathol Med. 2005;34:240–6.

    Article  PubMed  CAS  Google Scholar 

  43. Jayatilake JA, Samaranayake YH, Samaranayake LP. A comparative study of candidal invasion in rabbit tongue mucosal explants and reconstituted human oral epithelium. Mycopathologia. 2008;165:373–80.

    Article  PubMed  CAS  Google Scholar 

  44. King RD, Lee JC, Morris AL. Adherence of Candida albicans and other Candida species to mucosal epithelial cells. Infect Immun. 1980;27:667–74.

    PubMed  CAS  Google Scholar 

  45. Senet JM. Candida adherence phenomena, from commensalism to pathogenicity. Int Microbiol. 1998;1:117–22.

    PubMed  CAS  Google Scholar 

  46. Cawson RA, Rajasingham KC. Ultrastructural features of the invasive phase of Candida albicans. Br J Dermatol. 1972;87:435–43.

    Article  PubMed  CAS  Google Scholar 

  47. Rajasingham KC, Cawson RA. Ultrastructural identification of extracellular material and appressoria in Candida albicans. Cytobios. 1982;35:77–83.

    PubMed  CAS  Google Scholar 

  48. De Repentigny L, Aumont F, Bernard K, Belhumeur P. Characterization of binding of Candida albicans to small intestinal mucin and its role in adherence to mucosal epithelial cells. Infect Immun. 2000;68:3172–9.

    Article  PubMed  Google Scholar 

  49. Garcia-Tamayo J, Castillo G, Martinez AJ. Human genital candidiasis: histochemistry scanning and transmission microscopy. Acta Cytol. 1982;26:7–14.

    PubMed  CAS  Google Scholar 

  50. Korting HC, Patzak U, Schaller M, Maibach HI. A model of human cutaneous candidosis based on reconstituted human epidermis for the light and electron microscopic study of pathogenesis and treatment. J Infect. 1998;36:259–67.

    Article  PubMed  CAS  Google Scholar 

  51. Vitkov L, Krautgartner WD, Hannig M, Weitgasser R, Stoiber W. Candida attachment to oral epithelium. Oral Microbiol Immunol. 2002;17:60–4.

    Article  PubMed  CAS  Google Scholar 

  52. Myerowitz RL. Ultrastructural observations in disseminated candidiasis. Arch Pathol Lab Med. 1978;102:506–11.

    PubMed  CAS  Google Scholar 

  53. Pope LM, Cole GT. SEM studies of adherence of Candida albicans to the gastrointestinal tract of infant mice. Scan Electron Microsc. 1981;III:73–80.

    Google Scholar 

  54. Cole GT, Seshan KR, Pope LM, Yancey RJ. Morphological aspects of gastrointestinal tract invasion by Candida albicans in the infant mouse. J Med Vet Mycol. 1988;26:173–85.

    Article  PubMed  CAS  Google Scholar 

  55. Cole GT, Lynn KT, Seshan KR. An animal model for oropharyngeal, esophageal and gastric candidosis. Mycoses. 1990;33:7–19.

    PubMed  CAS  Google Scholar 

  56. Cole GT, Seshan KR, Lynn KT, Franco M. Gastrointestinal candidiasis: histopathology of Candida host interactions in a murine model. Mycol Res. 1993;97:385–408.

    Article  Google Scholar 

  57. Hoshika K, Mine H. Significance of modes of adherence in esophageal Candida albicans. J Gastroenterol. 1994;29:1–5.

    Article  PubMed  CAS  Google Scholar 

  58. Hoshika K, Iida M, Mine H. Esophageal Candida infection and adherence mechanisms in the nonimmunocompromised rabbit. J Gastroenterol. 1996;31:307–13.

    Article  PubMed  CAS  Google Scholar 

  59. Ray TL, Payne CD. Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect Immun. 1988;56:1942–9.

    PubMed  CAS  Google Scholar 

  60. Budtz-Jorgensen E. Histopathology, immunology, and serology of oral yeast infections. Diagnosis of oral candidosis. Acta Odontol Scand. 1990;48:37–43.

    Article  PubMed  CAS  Google Scholar 

  61. Lo H, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous C. albicans are avirulent. Cell. 1997;90:939–49.

    Article  PubMed  CAS  Google Scholar 

  62. Dieterich C, Schandar M, Noll M, Johannes FJ, Brunner H, Graeve T, et al. In vitro reconstructed human epithelia reveal contributions of Candida albicans EFG1 and CPH1 to adhesion and invasion. Microbiology. 2002;148:497–506.

    PubMed  CAS  Google Scholar 

  63. Jayatilake JA, Samaranayake YH, Cheung LK, Samaranayake LP. Quantitative evaluation of tissue invasion by wild type hyphal and SAP mutants of Candida albicans and non albicans Candida species in reconstituted human oral epithelium. J Oral Pathol Med. 2006;35:484–91.

    Article  PubMed  CAS  Google Scholar 

  64. Reichart PA, Philipson HP, Schmidt-Westhausen A, Samaranayake LP. Pseudomembranous oral candidiasis in HIV infection: ultrastructural findings. J Oral Pathol Med. 1995;24:276–81.

    Article  PubMed  CAS  Google Scholar 

  65. Howlett JA. The infection of rat tongue mucosa in vitro with five species of Candida. J Med Microbiol. 1976;9:309–16.

    Article  PubMed  CAS  Google Scholar 

  66. Wilborn WH, Montes LF. Scanning electron microscopy of oral lesions in chronic mucocutaneous candidiasis. JAMA. 1980;244:2294–7.

    Article  PubMed  CAS  Google Scholar 

  67. Stoetzner H, Kemmer C. The morphology of Candida albicans in human candidosis, a light and electron microscopic study. Mykosen. 1975;18:511–8.

    PubMed  CAS  Google Scholar 

  68. Scherwitz C. Ultrastructure of human cutaneous candidiasis. J Invest Dermatol. 1982;78:200–5.

    Article  PubMed  CAS  Google Scholar 

  69. Klotz SA, Drutz DJ, Harrison JL, Huppert M. Adherence and penetration of vascular endothelium by Candida yeasts. Infect Immun. 1983;42:374–84.

    PubMed  CAS  Google Scholar 

  70. Sherwood J, Gow NA, Gooday GW, Gregory DW, Marshall D. Contact sensing in Candida albicans: a possible aid to epithelial penetration. J Med Vet Mycol. 1992;30:461–9.

    Article  PubMed  CAS  Google Scholar 

  71. Gow NA, Perera TH, Sherwood-Higham J, Gooday GW, Gregory DW, Marshall D. Investigation of touch-sensitive responses by hyphae of the human pathogenic fungus Candida albicans. Scan Microsc. 1994;8:705–10.

    CAS  Google Scholar 

  72. Mendgen K, Hahn M, Deising H. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu Rev Phytopathol. 1996;34:367–86.

    Article  PubMed  CAS  Google Scholar 

  73. Rajasingham KC, Challacombe SJ, Tovay S. Ultrastructure and possible processes involved in the invasion of host epithelial cells by Candida albicans in vaginal candidosis. Cytobios. 1989;60:11–20.

    PubMed  CAS  Google Scholar 

  74. Hube B, Naglik J. Extracellular hydrolases. In: Calderone RA, editor. Candida and candidiasis. Washington, DC: ASM Press; 2002. p. 107–22.

    Google Scholar 

  75. Farrel SM, Hawkins DF, Ryder TA. Scanning electrone microscope study of Candida albicans invasion of cultured human cervical epithelial cells. Saboraudia. 1983;21:251–4.

    Article  Google Scholar 

  76. Schaller M, Schafer W, Korting HC, Hube B. Differential expression of secreted aspartyl proteinases in a model of human oral candidosis and in patient samples from the oral cavity. Mol Microbiol. 1998;29:605–15.

    Article  PubMed  CAS  Google Scholar 

  77. Staib F. Serum protein as nitrogen source for yeast like fungi. Sabouraudia. 1965;4:187–93.

    Article  PubMed  CAS  Google Scholar 

  78. Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67:400–28.

    Article  PubMed  CAS  Google Scholar 

  79. Borg M, Ruchel R. Expression of extracellular acid proteinase by proteolytic Candida spp. during experimental infection of oral mucosa. Infect Immun. 1988;56:626–31.

    PubMed  CAS  Google Scholar 

  80. Kobayashi I, Kondoh Y, Shimizu K, Tanaka K. The role of proteinase of Candida albicans for the invasion of chick chorio-allantoic membrane. Microbiol Immunol. 1989;33:709–19.

    PubMed  CAS  Google Scholar 

  81. Schaller M, Januscheke E, Schackert C, Woerle B, Korting HC. Different isoforms of secretory aspartyl proteinases (Sap) are expressed by Candida albicans during oral and cutaneous candidosis in vivo. J Med Microbiol. 2001;50:743–7.

    PubMed  CAS  Google Scholar 

  82. Barret-Bee K, Hayes Y, Wilson RG, Ryley JF. A comparison of phospholipase activity, cellular adherence and pathogenicity of yeasts. J Gen Microbiol. 1985;131:1217–21.

    Google Scholar 

  83. van Burik JH, Magee PT. Aspects of fungal pathogenesis in humans. Annu Rev Microbiol. 2001;55:743–72.

    Article  PubMed  Google Scholar 

  84. Slustsky B, Staebell M, Anderson J, Risen L, Pfaller M, Soll DR. White opaque transition: a second high frequency switching system in Candida albicans. J Bacteriol. 1987;169:189–97.

    Google Scholar 

  85. Soll DR. Phenotypic switching. In: Calderone RA, editor. Candida and candidiasis. Washington, DC: ASM Press; 2002. p. 123–42.

    Google Scholar 

  86. Vargas K, Vertz PW, Drake D, Morrow B, Soll DR. Differences in adhesion of Candida albicans 3153A cells exhibiting switch phenotypes to buccal epithelium and stratum corneum. Infect Immun. 1994;62:1328–35.

    PubMed  CAS  Google Scholar 

  87. Ashman RB, Papadimitriou JM. Production and function of cytokines in natural and acquired immunity to Candida albicans infection. Microbiol Rev. 1995;59:646–72.

    PubMed  CAS  Google Scholar 

  88. Eversole LR, Reichart PA, Ficarra G, Schmidt-Westhausen A, Romagnoli P, Pimpinelli N. Oral keratinocyte immune responses in HIV-associated candidiasis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84:372–80.

    Article  PubMed  CAS  Google Scholar 

  89. Belcher RW, Carney JF, Monahan FG. An electron microscopic study of phagocytosis of Candida albicans by polymorphoneuclear leucocytes. Lab Invest. 1973;29:620–7.

    PubMed  CAS  Google Scholar 

  90. Kaposzta R, Marodi L, Hollinshead M, Gordon S, da Silva RP. Rapid recruitment of late endosomes and lysosomes in mouse macrophages ingesting Candida albicans. J Cell Sci. 1999;112:3237–48.

    PubMed  CAS  Google Scholar 

  91. Schnell JD, Voigt WH. Are yeasts in vaginal smears intracellular or extracellular. Acta Cytological. 1976;20:343–6.

    CAS  Google Scholar 

  92. Calderone RA, Lehrer N, Segal E. Adherence of Candida albicans to buccal and vaginal epithelial cells: ultrastructural observations. Can J Microbiol. 1984;30:1001–7.

    Article  PubMed  CAS  Google Scholar 

  93. Enache E, Eskandori T, Borja L, Wardsworth E, Hoxter B, Calderone RA. Candida albicans adherence to a human esophageal cell line. Microbiology. 1996;142:2741–6.

    Article  PubMed  CAS  Google Scholar 

  94. Drago L, Mombelli B, De Vecchi E, Bonaccorso C, Fassina MC, Gismondo MR. Candida albicans cellular internalization: a new pathogenic factor? Int J Antimicrob Agents. 2000;16:545–7.

    Article  PubMed  CAS  Google Scholar 

  95. Filler SG, Swerdloff JN, Hobbs C, Luckett PM. Penetration and damage of endothelial cells by Candida albicans. Infect Immun. 1995;63:976–83.

    PubMed  CAS  Google Scholar 

  96. Stone HH, Kolb LD, Currie CA, Geheber CE, Cuzzell JZ. Candida sepsis: pathogenesis and principles of treatments. Ann Surg. 1974;179:697–711.

    Article  PubMed  CAS  Google Scholar 

  97. Zink S, Nab T, Rosen P, Ernst JF. Migration of the fungal pathogen Candida albicans across endothelial monolayers. Infect Immun. 1996;64:5085–91.

    PubMed  CAS  Google Scholar 

  98. Sitheeque MA, Samaranayake LP. Chronic hyperplastic candidosis/candidiasis (candidal leukoplakia). Crit Rev Oral Biol Med. 2003;14:253–67.

    Article  PubMed  CAS  Google Scholar 

  99. Nagai Y, Takeshita N, Saku T. Histopathologic and ultrastructural studies of oral mucosa with Candida infection. J Oral Pathol Med. 1992;21:171–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Author would like to thank Professor L.P. Samaranayake, Faculty of Dentistry, The University of Hong Kong for his constructive advice in preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. M. S. Jayatilake.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jayatilake, J.A.M.S. A Review of the Ultrastructural Features of Superficial Candidiasis. Mycopathologia 171, 235–250 (2011). https://doi.org/10.1007/s11046-010-9373-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-010-9373-7

Keywords

Navigation