Skip to main content
Log in

Trichophyton indotineae sp. nov.: A New Highly Terbinafine-Resistant Anthropophilic Dermatophyte Species

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

In this report, we describe the first isolation of two highly terbinafine (TRF)-resistant Trichophyton interdigitale-like strains from a Nepali patient and an Indian patient with tinea corporis in Japan. These strains (designated NUBS19006 and NUBS19007) exhibited a TRF minimal inhibitory concentration (MIC) of > 32 mg/L and contained a missense mutation (Phe397Leu) in squalene epoxidase (SQLE) gene. The internal transcribed spacer (ITS) region sequences amplified from the isolates (NUBS19006 and NUBS19007) were 99.5% identical to Japanese isolates of T. interdigitale and T. interdigitale strain CBS 428.63. The homology of region sequences were also 97.6% identical to T. mentagrophytes strain CBS 318.56. Moreover, the ITS sequences amplified from the isolates were 100% identical to highly TRF-resistant strains of T. interdigitale, which were isolated in Delhi, India, and harbored mutations in SQLE. The urease test on Christensen’s urease agar was positive for T. mentagrophytes and T. interdigitale after 7 days of incubation. On the other hand, the type strain of T. rubrum CBS 100081 T and highly TRF-resistant strains (NUBS19006 and NUBS19007) were negative on Christensen urease agar after 7 and 14 days of incubation. Moreover, NUBS19006 and NUBS19007 were also negative reaction on the hair perforation test. To avoid confusion in the taxonomy of the T. mentagrophytes/T. interdigitale complex, we suggest that the highly TRF-resistant Indian strains be considered a new species independent of T. interdigitale, according to clinical and mycological features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kwon-Chung KJ, Bennett EJ. Dermatophytoses. In: Medical mycology, Philadelphia: Lea & Febiger, 1992;105–161 and 816–826.

  2. Reiss E, Shadomy HJ, Lyon IIIGM. Dermatophytosis. In: Fundamental medical mycology, New Jersey: Wiley; 2012; 527–566.

  3. Singh A, Masih A, Khurana A, Singh PK, Gupta M, Hagen F, Meis JF, Chowdhary A. High terbinafine resistance in Trichophyton interdigitale isolates in Delhi, India harbouring mutations in the squalene epoxidase gene. Mycoses. 2018;61:477–84.

    Article  CAS  Google Scholar 

  4. Singh A, Masih A, Monroy-Nieto J, Singh PK, Bowers J, Travis J, Khurana A, Engelthaler DM, Meis JF, Chowdhary A. A unique multidrug-resistant clonal Trichophyton population distinct from Trichophyton mentagrophytes/Trichophyton interdigitale complex causing an ongoing alarming dermatophytosis outbreak in India: genomic insights and resistance profile. Fungal Genet Biol. 2019. https://doi.org/10.1016/j.fgb.2019.103266.

    Article  PubMed  Google Scholar 

  5. Friedman DZP, Schwartz IS. J Fungi (Basel). 2019;2:E67. https://doi.org/10.3390/jof5030067.

    Article  CAS  Google Scholar 

  6. Kakurai M, Kazutoshi H, Maeda T, Hiruma J, Kano R, Demitsu T. A case of tinea corporis due to terbinafine-resistant Trichophyton interdigitale. J Dermatol. 2020. https://doi.org/10.1111/1346-8138.15243.

    Article  PubMed  Google Scholar 

  7. Kimura U, Hiruma M, Kano R, Matsumoto T, Noguchi H, Takamori K, Suga Y. Caution-and-warning: arrival of terbinafine-resistant Trichophyton interdigitale of the Indian genotype, isolated from extensive dermatophytosis, in Japan. J Dermatol. 2020. https://doi.org/10.1111/1346-8138.15300.

    Article  PubMed  Google Scholar 

  8. Kano R, Kawasaki M, Mochizuki T, Hiruma M, Hasegawa A. Mating genes of the Trichophyton mentagrophytes complex. Mycopathologia. 2012;173:103–12.

    Article  CAS  Google Scholar 

  9. Hinrikson HP, Hurst SF, Lott TJ, Warnock DW, Morrison CJ. Assessment of ribosomal large-subunit D1–D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as target for molecular identification of medically important Aspergillus species. J Clin Microbiol. 2005;43:2092–103.

    Article  CAS  Google Scholar 

  10. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res. 1994;22:4673–80.

    Article  CAS  Google Scholar 

  11. Page RDM. TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996;12:357–8.

    CAS  PubMed  Google Scholar 

  12. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91.

    Article  Google Scholar 

  13. CLSI. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard 2nd ed. CLSI document M38-A2. Clinical Laboratory Standards Institute. Philadelphia: Wayne; 2008.

  14. Itoi S, Kano R, Hasegawa A, Hasegawa A, Kamata H. In vitro activities of antifungal agents against clinical isolates of dermatophytes from animals. J Vet Med Sci. 2012;74:1067–9.

    Article  CAS  Google Scholar 

  15. Hiruma J, Kitagawa H, Noguchi H, Kano R, Hiruma M, Kamata H, Harada K. Terbinafine-resistant strain of Trichophyton interdigitale strain isolated from a tinea pedis patient. J Dermatol. 2019;46:351–3.

    Article  CAS  Google Scholar 

  16. Ellis D, Davis S, Alexiou H, Handke R, Bartley R. Descriptions of medical fungi. 2nd ed. South Australia: Nexus Print Solutions; 2007.

    Google Scholar 

  17. Kane J, Summerbell R, Sigler L, Krajden S, Land G. Laboratory handbook of dermatophytes: a clinical guide and laboratory manual of dermatophytes and other filamentous fungi from skin, hair, and nails. Belmont: Star Publishing Company; 1997.

    Google Scholar 

  18. Hironaga M, Watanabe S. Mating behavier of 334 Japanese isolaties of Trichophyton mentagrophytes in relation to their ecological status. Mycologia. 1980;72:1159–70.

    Article  Google Scholar 

  19. de Hoog GS, Dukik K, Monod M, Packeu A, Stubbe D, Hendrickx M, Kupsch C, Stielow JB, Freeke J, Göker M, Rezaei-Matehkolaei A, Mirhendi H, Gräser Y. Toward a novel multilocus phylogenetic taxonomy for the dermatophytes. Mycopathologia. 2017;182:5–31.

    Article  Google Scholar 

  20. Chaturvedi V, de Hoog GS. Onygenalean fungi as major human and animal pathogens. Mycopathologia. 2020;185:1–8.

    PubMed  Google Scholar 

  21. Kandemir H, Dukik K, Hagen F, Ilkit M, Gräser Y, de Hoog GS. Polyphasic discrimination of trichophyton tonsurans and t equinum from humans and horses. Mycopathologia. 2020;185:113–22.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thanks to Dr. Atsuhiko Hasegawa, who advised to us for mycological identifications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Kano.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Vishnu Chaturvedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kano, R., Kimura, U., Kakurai, M. et al. Trichophyton indotineae sp. nov.: A New Highly Terbinafine-Resistant Anthropophilic Dermatophyte Species. Mycopathologia 185, 947–958 (2020). https://doi.org/10.1007/s11046-020-00455-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-020-00455-8

Keywords

Navigation