Skip to main content
Log in

Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids

  • Technology and applications
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This paper is concerned about pool boiling heat transfer using nanofluids, a subject of several investigations over the past few years. The work is motivated by the controversial results reported in the literature and the potential impact of nanofluids on heat transfer intensification. Systematic experiments are carried out to formulate stable aqueous based nanofluids containing γ-alumina nanoparticles (primary particle size 10–50 nm), and to investigate their heat transfer behaviour under nucleate pool boiling conditions. The results show that alumina nanofluids can significantly enhance boiling heat transfer. The enhancement increases with increasing particle concentration and reaches ∼ ∼40% at a particle loading of 1.25% by weight. Discussion of the results suggests that the reported controversies in the thermal performance of nanofluids under the nucleate pool boiling conditions be associated with the properties and behaviour of the nanofluids and boiling surface, as well as their interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bang I.C. & S.H. Chang, 2004. Boiling heat transfer performance and phenomena of Al2O3–water nanofluids from a plain surface in a pool. in Proceedings of ICAPP, Pittsburgh, US

  • V.P. Carey (1992) Liquid–Vapor Phase-Change Phenomena Washington, DC, USA Hemisphere

    Google Scholar 

  • G.P. Celata M. Cumo G. Zummo (2004) ArticleTitleThermal–hydraulic characteristics of single-phase flow in capillary pipes Exp. Therm. Fluids Sci. 28 87–95 Occurrence Handle10.1016/S0894-1777(03)00026-8

    Article  Google Scholar 

  • Chengara A., A. Nikolov, D. Wasan, A. Trokhymchuk & D. Henderson, 2004. Spreading of nanofluids driven by the structural disjoining pressure gradient. J. Colloid Interf. Sci., in press

  • Choi S.U.S., 1995. Enhancing thermal conductivity of fluids with nanoparticles. in Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, CA, USA

  • Choy T.C., 1999. Effective Medium Theory, Oxford University Press

  • S.K. Das N. Putra W. Roetzel (2003a) ArticleTitlePool boiling characteristics of nano-fluids Int. J. Heat Mass Transf. 46 851–862 Occurrence Handle10.1016/S0017-9310(02)00348-4

    Article  Google Scholar 

  • S.K. Das N. Putra W. Roetzel (2003b) ArticleTitlePool boiling of nano-fluids on horizontal narrow tubes Int. J. Multiphase Flow 29 1237–1247 Occurrence Handle10.1016/S0301-9322(03)00105-8

    Article  Google Scholar 

  • Ding Y.L., D.S. Wen & R.A. Williams, 2004. Nanofluids for heat transfer intensification, where are we and we should we go? in Proceeding of the 6th International Heat Transfer Symposium, Beijing, China

  • J.A. Eastman S.U.S. Choi S. Li L.J. Thompson S. Lee (1996) Enhanced thermal conductivity through the development of nanofluids, in 1996 Fall meeting of the Materials Research Society (MRS) USA Boston

    Google Scholar 

  • J.A. Eastman S.U.S. Choi S. Li W. Yu L.J. Thompson (2001) ArticleTitleAnomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles Appl. Phys. Lett. 78 718–720

    Google Scholar 

  • E.J. Garboczi J.G. Berryman (2000) ArticleTitleNew effective medium theory for the diffusivity or conductivity of a multi-scale concrete microstructure model Concrete Sci. Eng. 2 88–96

    Google Scholar 

  • Z.Y. Guo Z.X. Li (2003) ArticleTitleSize effect on single-phase channel flow and heat transfer at microscale Int. J. Heat Fluid Flow 24 284 Occurrence Handle10.1016/S0142-727X(03)00019-5

    Article  Google Scholar 

  • R.L. Hamilton O.K. Crosser (1962) ArticleTitleThermal conductivity of heterogeneous two-component systems I & EC Fundamentals 1 187–191

    Google Scholar 

  • G. Hetsroni M. Gurevich A. Mosyak R. Rozenblit Z. Segal (2004) ArticleTitleBoiling enhancement with environmentally acceptable surfactants Int. J. Heat Fluid Flow 25 841–848 Occurrence Handle10.1016/j.ijheatfluidflow.2004.05.005

    Article  Google Scholar 

  • Y.Y. Hsu (1962) ArticleTitleOn the size of range of active nucleation cavities on a heating surface ASME J. Heat Transf. 84 207–215

    Google Scholar 

  • A.L. Judd K.S. Hwang (1976) ArticleTitleA comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation ASME J. Heat Transf. 98 623–629

    Google Scholar 

  • P. Keblinski S.R. Phillpot S.U.S. Choi J.A. Eastman (2002) ArticleTitleMechanisms of heat flow in suspensions of nano-sized particles (nanofluids) Int. J. Heat Mass Transf. 45 855–863 Occurrence Handle10.1016/S0017-9310(01)00175-2

    Article  Google Scholar 

  • S. Lee S.U.S. Choi S. Li J.A. Eastman (1999) ArticleTitleMeasuring thermal conductivity of fluids containing oxide nanoparticles ASME J. Heat Transf. 121 280–289

    Google Scholar 

  • H. Masuda A. Ebata K. Teramae N. Hishinuma (1993) ArticleTitleAlteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of γ-Al2O3, SiO2 and TiO2 ultra-fine particles) Netsu Bussei (Japan) 4 227–233

    Google Scholar 

  • B.C. Pak Y.I. Cho (1999) ArticleTitleHydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles Exp. Heat Transf. 11 151–170

    Google Scholar 

  • W.M Rohsenow (1952) ArticleTitleA method of correlating heat transfer data for surface boiling liquids Trans. ASME 74 969–979

    Google Scholar 

  • C.Y. Tsai H.T. Chien P.P. Ding B. Chan T.Y. Luh P.H. Chen (2003) ArticleTitleEffect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance Mater. Lett. 58 1461–1465 Occurrence Handle10.1016/j.matlet.2003.10.009

    Article  Google Scholar 

  • Tu J.P., N. Dinh & T. Theofanous, 2004. An experimental study of nanofluid boiling heat transfer. in Proceedings of 6th International Symposium on Heat Transfer, Beijing, China

  • P. Vassallo R. Kumar S. Damico (2004) ArticleTitlePool boiling heat transfer experiments in silica–water nano-fluids Int. J. Heat Mass Transf. 47 407–411 Occurrence Handle10.1016/S0017-9310(03)00361-2

    Article  Google Scholar 

  • X.W. Wang X.F. Xu S.U.S. Choi (1999) ArticleTitleThermal conductivity of nanoparticle-fluid mixture J. Thermophys. Heat Transf. 13 474–480

    Google Scholar 

  • B.X. Wang L.P. Zhou X.F. Peng (2003) ArticleTitleA fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles Int. J. Heat Mass Transf. 46 2665–2672 Occurrence Handle10.1016/S0017-9310(03)00016-4

    Article  Google Scholar 

  • D. Wasan A. Nikolove (2003) ArticleTitleSpreading of nanofluids on solids Nature 423 156–159 Occurrence Handle10.1038/nature01591 Occurrence Handle12736681

    Article  PubMed  Google Scholar 

  • V.M. Wasekar R.M. Manglik (1999) ArticleTitleA review of enhanced heat transfer in nucleate pool boiling of aqueous surfactant and polymeric solutions J. Enhanced Heat Transf. 6 135–150

    Google Scholar 

  • V.M. Wasekar R.M. Manglik (2000) ArticleTitlePool boiling heat transfer in aqueous solutions of an anionic surfactant J. Heat Transf. (Trans. ASME) 122 708–715 Occurrence Handle10.1115/1.1316785

    Article  Google Scholar 

  • V.M. Wasekar R.M. Manglik (2002) ArticleTitleThe influence of additive molecular weight and ionic nature on the pool boiling performance of aqueous surfactant solutions Int. J. Heat Mass Transf. 45 483–493 Occurrence Handle10.1016/S0017-9310(01)00174-0

    Article  Google Scholar 

  • D.S. Wen Y.L. Ding (2004a) ArticleTitleEffective thermal conductivity of aqueous suspensions of carbon nanotubes (Nanofluids) J. Thermophys. Heat Transf. 18 IssueID4 481–485

    Google Scholar 

  • D.S. Wen Y.L. Ding (2004b) ArticleTitleExperimental investigation into convective heat transfer of nanofluids at entrance area under laminar flow region Int. J. Heat Mass Transf. 47 IssueID24 5181–5188 Occurrence Handle10.1016/j.ijheatmasstransfer.2004.07.012

    Article  Google Scholar 

  • D.S. Wen B.X. Wang (2002) ArticleTitleEffects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions Int. J. Heat Mass transf. 45 IssueID8 1739–1747 Occurrence Handle10.1016/S0017-9310(01)00251-4

    Article  Google Scholar 

  • Witharana S., 2003. Boiling of Refrigerants on Enhanced Surfaces and Boiling of Nanofluids, Ph.D. thesis, Royal Institute of Technology, Stockholm, Sweden

  • W.T. Wu Y.M. Yang J.R. Maa (1995) ArticleTitleEnhancement of nucleate boiling heat transfer and depression of surface tension by surfactant additives J. Heat Transf. 117 526–529

    Google Scholar 

  • H. Xie J. Wang T.G. Xi Y. Liu F. Ai (2002) ArticleTitleThermal conductivity enhancement of suspensions containing nanosized alumina particles J. Appl. Phys. 91 4568–4572 Occurrence Handle10.1063/1.1454184

    Article  Google Scholar 

  • Y.M. Xuan Q. Li (2000) ArticleTitleHeat transfer enhancement of nanofluids Int. J. Heat Fluid Flow 21 58–64 Occurrence Handle10.1016/S0142-727X(99)00067-3

    Article  Google Scholar 

  • Y.M. Xuan W. Roetzel (2000) ArticleTitleConceptions for heat transfer correlation of nanofluids Int. J. Heat Mass Transf. 43 3701–3707 Occurrence Handle10.1016/S0017-9310(99)00369-5

    Article  Google Scholar 

  • Y. Xuan Q. Li (2003) ArticleTitleInvestigation on convective heat transfer and flow features of nanofluids ASME J. Heat Transf. 125 151–155 Occurrence Handle10.1115/1.1532008

    Article  Google Scholar 

  • Y.M. Yang J.R. Maa (1983) ArticleTitlePool boiling of dilute surfactant solutions J. Heat Transf. 105 190–192

    Google Scholar 

  • Y.M. Yang J.R. Maa (2001) ArticleTitleOn the criteria of nucleate pool boiling enhancement by surfactant addition to water Trans. Inst. Chem. Eng. 79 IssueIDPart A 409–415

    Google Scholar 

  • Y.M. Yang C.Y. Lin M.H. Liu J.R. Maa (2002) ArticleTitleLower limit of the possible nucleate pool boiling enhancement by surfactant addition to water J. Enhanced Heat Transf. 9 153–160 Occurrence Handle10.1080/10655130215734

    Article  Google Scholar 

  • S.M. You J.H. Kim K.H. Kim (2003) ArticleTitleEffect of nanoparticles on critical heat flux of water in pool boiling heat transfer Appl. Phys. Lett. 83 3374–3376 Occurrence Handle10.1063/1.1619206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulong Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, D., Ding, Y. Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J Nanopart Res 7, 265–274 (2005). https://doi.org/10.1007/s11051-005-3478-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-3478-9

Key words

Navigation