Skip to main content
Log in

A simple biogenic route to rapid synthesis of Au@TiO2 nanocomposites by electrochemically active biofilms

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Deposition of gold on titanium dioxide (TiO2) nanoparticles is highly beneficial for maximizing the efficiency of many photocatalytic reactions. In this study, we have reported for the first time the use of an electrochemically active biofilm (EAB) for the synthesis of Au@TiO2 nanocomposite with sodium acetate as the electron donor. The EAB acts as an electron generator for the reduction of gold ions on the surface of TiO2 nanoparticles. It was observed that the TiO2 plays not only as a support for the gold nanoparticles but also as a storage of electrons produced by the EAB within the particles. These stored electrons dramatically increase the reduction of gold ions and hence we have observed the formation of the Au@TiO2 nanocomposites within 90 min. A mechanism of the nanocomposite formation is also proposed. The as-synthesized nanocomposites were characterized by UV–Vis absorption spectroscopy to monitor the proper formation of the nanocomposites. X-ray diffraction and transmission electron microscopic analyses were performed to determine the structural and microstructural properties of the nanocomposites. High-resolution transmission electron micrographs depict the proper formation of the Au@TiO2 nanocomposites with gold nanoparticle size varying from 5 to 10 nm with an increase in the gold precursor concentration. Zeta potential measurements were used to investigate surface charges of the as-synthesized nanocomposites. This novel biogenic route represents a unique pathway for the low cost, eco-friendly, rapid, and controlled synthesis of nanostructured Au@TiO2 hybrid systems which will truly revolutionize the synthetic fields of nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  • An J, Tang B, Zheng X, Zhou J, Dong F, Xu S, Wang Y, Zhao B, Xu W (2008) Sculpturing effect of chloride ions in shape transformation from triangular to discal silver nanoplates. J Phys Chem C 112:15176–15182

    Article  CAS  Google Scholar 

  • Anandan S, Ashokkumar M (2009) Sonochemical synthesis of Au–TiO2 nanoparticles for the sonophotocatalytic degradation of organic pollutants in aqueous environment. Ultrason Sonochem 16:316–320

    Article  CAS  Google Scholar 

  • Banerjee AN (2011) The design, fabrication, and photocatalytic utility of nanostructured semiconductors: focus on TiO2-based nanostructures. Nanotechnol Sci Appl 4:35–65

    Article  CAS  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    Article  CAS  Google Scholar 

  • Borole AP, Reguera G, Ringeisen B, Wang Z-W, Feng Y, Kim BH (2011) Electroactive biofilms: current status and future research needs. Energy Environ Sci 4:4813–4834

    Article  CAS  Google Scholar 

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  • Chen SF, Li JP, Quian K, Xu WP, Lu Y, Huang WX, Yu SH (2010) Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance and antibacterial effect. Nano Res 3:244–255

    Article  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  Google Scholar 

  • Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications towards biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  • Dawson A, Kamat PV (2001) Semiconductor–metal nanocomposites. Photoinduced fusion and photocatalysis of gold-capped TiO2 (TiO2/gold) nanoparticles. J Phys Chem B 105:960–966

    Article  CAS  Google Scholar 

  • Dorjnamjin D, Ariunna M, Shim YK (2008) Synthesis of silver nanoparticles using hydroxyl functionalized ionic liquids and their antibacterial activity. Int J Mol Sci 9:807–820

    Article  CAS  Google Scholar 

  • Dulon S, Parot S, Delia ML, Bergel A (2007) Electroactive biofilms: a new means for electrochemistry. J Appl Electrochem 37:173–179

    Article  CAS  Google Scholar 

  • Erable B, Duteanu NM, Ghangrekar MM, Dumas C, Scott K (2010) Application of electro-active biofilms. Biofouling 26:57–71

    Article  CAS  Google Scholar 

  • Grimes CA, Mor GK (2009) TiO2 nanotube arrays, synthesis, properties and applications. Springer, New York

    Google Scholar 

  • Gumy D, Morais C, Bowen P, Pulgarin C, Giraldo S, Hajdu R, Kiwi J (2006) Catalytic activity of commercial of TiO2 powders for the abatement of the bacteria (E. coli) under solar simulated light: influence of the isoelectric point. Appl Catal B 63:76–84

    Article  CAS  Google Scholar 

  • Haruta M (1997) Size-dependency and support-dependency in the catalysis of gold. Catal Today 36:153–166

    Article  CAS  Google Scholar 

  • Hosseinkhani H (2006) DNA nanoparticles for gene delivery to cells and tissue. Int J Nanotechnol 3:134–140

    Article  Google Scholar 

  • Hosseinkhani H, Tabata Y (2006) Self assembly of DNA nanoparticles with polycations for the delivery of genetic materials into cells. J Nanosci Nanotechnol 6:2320–2328

    Article  CAS  Google Scholar 

  • Howe RF, Graetzel M (1985) EPR observation of trapped electrons in colloidal titanium dioxide. J Phys Chem 89:4495–4499

    Article  CAS  Google Scholar 

  • Im SH, Lee YT, Wiley B, Xia Y (2005) Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed 44:2154–2157

    Article  CAS  Google Scholar 

  • Jacob M, Levanon H, Kamat PV (2003) Charge distribution between UV-irradiated TiO2 and gold nanoparticles: determination of shift in the Fermi level. Nano Lett 3:353–358

    Article  Google Scholar 

  • Kaise M, Nagai H, Tokuhashi K, Kondo S, Nimura S, Kikuchi O (1994) Electron spin resonance studies of photocatalytic interface reactions of suspended M/TiO2 (M = Pt, Pd, Ir, Rh, Os, or Ru) with alcohol and acetic acid in aqueous media. Langmuir 10:1345–1347

    Article  CAS  Google Scholar 

  • Kalathil S, Lee J, Cho MH (2011) Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chem 13:1482–1485

    Article  CAS  Google Scholar 

  • Kamat PV (2002a) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  CAS  Google Scholar 

  • Kamat PV (2002b) Photoinduced transformations in semiconductor metal nanocomposite assemblies. Pure Appl Chem 74:1693–1706

    Article  CAS  Google Scholar 

  • Kamat PV (2007) Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J Phys Chem C 111:2834–2860

    Article  CAS  Google Scholar 

  • Kapoor S (1999) Effect of ligands on the redox reactions silver metal clusters. Langmuir 15:4365–4369

    Article  CAS  Google Scholar 

  • Li Y, EI-Sayed MA (2001) The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. J Phys Chem B 105:8938–8943

    Article  CAS  Google Scholar 

  • Li J, Zeng HC (2006) Preparation of monodisperse Au/TiO2 nanocatalysts via self assembly. Chem Mater 18:4270–4277

    Article  CAS  Google Scholar 

  • Lindström S, Iles A, Persson J, Hosseinkhani H, Hosseinkhani M, Khademhosseini A, Linström H, Anderson-Svahn H (2010) Nanoporous titania coating of microwell chips for stem culture and analysis. J. Biomech Sci Technol 5:272–279

    Article  Google Scholar 

  • Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    Article  CAS  Google Scholar 

  • Logan BE, Murano C, Scott K, Gray ND, Head IM (2005) Electricity generation from cysteine in a microbial fuel cell. Water Res 39:942–952

    Article  CAS  Google Scholar 

  • Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S (2011) Magnetic imaging resonance tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111:253–280

    Article  CAS  Google Scholar 

  • Moreau F, Bond GC (2007) Preparation and reactivation of Au/TiO2 catalysts. Catal Today 122:260–265

    Article  CAS  Google Scholar 

  • Moreau F, Bond GC, Taylor AO (2005) Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents. J Catal 231:105–114

    Article  CAS  Google Scholar 

  • Narayanan R, EI-Sayed MA (2003) Effect of catalysis on the stability of metallic nanoparticles: Suzuki reactions catalyzed by PVP-palladium nanoparticles. J Am Chem Soc 125:8340–8347

    Article  CAS  Google Scholar 

  • Primo A, Corma A, Garcia H (2011) Titania supported gold nanoparticles as photocatalyst. Phys Chem Chem Phys 13:886–910

    Article  CAS  Google Scholar 

  • Stiles AB, Koch TA (1995) Catalyst manufacture, 2nd edn. Dekker, New York

    Google Scholar 

  • Subramani K, Hosseinkhani H, Khraisat A, Hosseinkhani M, Pathak Y (2009) Targeting nanoparticles as drug delivery systems for cancer treatment. Curr Nanosci 5:135–140

    Article  CAS  Google Scholar 

  • Subramanian V, Wolf EE, Kamat PV (2003) Influence of metal/metal ion concentration on the photocatalytic activity of TiO2–Au composite nanoparticles. Langmuir 19:469–474

    Article  CAS  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  CAS  Google Scholar 

  • Tom RT, Nair AS, Singh N, Aslam M, Nagendra CL, Philip R, Vijayamohanan K, Pradeep T (2003) Freely dispersible Au@TiO2, Au@ZrO2, Ag@TiO2, and Ag@ZrO2 core–shell nanoparticles: one-step synthesis, characterizations, and optical limiting properties. Langmuir 19:3439–3445

    Article  CAS  Google Scholar 

  • Wiley B, Herricks T, Sun Y, Xia Y (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4:1733–1739

    Article  CAS  Google Scholar 

  • Xin B, Jing L, Wang B, Fu H (2005) Effect of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2. J Phys Chem B 109:2805–2809

    Article  CAS  Google Scholar 

  • Yeung LK, Crooks RM (2001) Heck hetero coupling within a dendritic nanoreactor. Nano Lett 1:14–17

    Article  CAS  Google Scholar 

  • Zeng HC (2004) In: The Dekker encyclopedia of nanoscience and nanotechnology. Dekker, New York, pp 2539–2550

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant No: 2012R1A1A4A01005951). Shafeer Kalathil was supported by the Human Resources Development Program of Korea Institute of Energy Technology Evaluation and Planning (KETEP) Grant (No: 20104010100580) funded by the Korean Ministry of Knowledge Economy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo Hwan Cho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 801 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalathil, S., Khan, M.M., Banerjee, A.N. et al. A simple biogenic route to rapid synthesis of Au@TiO2 nanocomposites by electrochemically active biofilms. J Nanopart Res 14, 1051 (2012). https://doi.org/10.1007/s11051-012-1051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1051-x

Keywords

Navigation