Skip to main content
Log in

Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Antibacterial activity of MgO nanoparticles (NPs) was evaluated against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa as well as the Gram-positive bacterium Staphylococcus aureus by microtitre plate-based assay incorporating resazurin as an indicator of cell growth. MgO NPs exhibited antibacterial activity with minimal inhibitory concentration of 500 μg/mL against E. coli and 1,000 μg/mL for P. aeruginosa and S. aureus. MgO NPs enhanced ultrasound-induced lipid peroxidation in the liposomal membrane. It was suggested that the mechanism of the antibacterial activity of the MgO NPs relied on the presence of defects or oxygen vacancy at the surface of the nanoparticle which led to the lipid peroxidation and reactive oxygen species generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alavi MA, Morsali A (2010) Synthesis and characterization of Mg(OH)2 and MgO nanostructures by ultrasonic method. Ultrason Sonochem 17:441–446

    Article  CAS  Google Scholar 

  • Berger T, Sterrer M, Stankic S, Bernardi J, Diwald O, Knozinger E (2005) Trapping of photogenerated charges in oxide nanoparticles. Mater Sci Eng C 25:664–668

    Article  Google Scholar 

  • Bertinetti L, Drouet C, Combes C, Rey C, Tampieri A, Coluccia S, Martra G (2009) Surface characteristics of nanocrystalline apatites: effect of Mg surface enrichment on morphology, surface hydration species, and cationic environments. Langmuir 25:5647–5654

    Article  CAS  Google Scholar 

  • Boubeta CM, Balcells L, Cristòfol R, Sanfeliu C, Rodríguez E, Weissleder R, Piedrafita S, Simeonidis K, Angelakeris M et al (2010) Self-assembled multifunctional Fe/MgO nanospheres for magnetic resonance imaging and hyperthermia. Nanomedicine 6:362–370

    Article  Google Scholar 

  • Chatterjee SN, Agarwal S (1988) Liposomes as membrane model for study of lipid peroxidation. Free Radic Biol Med 4:51–72

    Article  CAS  Google Scholar 

  • Di DR, He ZZ, Sun ZQ, Liu J (2012) A new nano-cryosurgical modality for tumor treatment using biodegradable MgO nanoparticles. Nanomedicine. doi:10.1016/j.nano.2012.02.010 (in press)

  • Fang M, Chen JH, Xu XL, Yang PH, Hildebrand HF (2006) Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents 27:513–517

    Article  CAS  Google Scholar 

  • Fang C, Bhattarai N, Sun C, Zhang M (2009) Functionalized nanoparticles with long-term stability in biological media. Small 5:1637–1641

    Article  CAS  Google Scholar 

  • Feng B, Hong RY, Wang LS, Guo L, Li HZ, Ding J, Zheng Y, Wei G (2008) Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids Surf A 328:52–59

    Article  CAS  Google Scholar 

  • French GL (2005) Clinical impact and relevance of antibiotic resistance. Adv Drug Deliv Rev 57:1514–1527

    Article  CAS  Google Scholar 

  • Gu F, Wang SF, Lu MK, Zou WG, Zhou GJ, Xu D, Yuan DR (2004) Combustion synthesis and luminescence properties of Dy3+-doped MgO nanocrystals. J Cryst Growth 260:507–510

    Article  CAS  Google Scholar 

  • Hu W, Peng C, Luo W, Lv M, Li X, Li D, Huang Q, Fan C (2010) Graphene based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  Google Scholar 

  • Jana AK, Agarwal S, Chatterjee SN (1990) The induction of lipid peroxidation in liposomal membrane by ultrasound and the role of hydroxyl radicals. Radiat Res 124:7–14

    Article  CAS  Google Scholar 

  • Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH (2008) Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 74:2171–2178

    Article  CAS  Google Scholar 

  • Kanagalakshmi K, Premanathan M, Priyanka R, Hemalatha B, Vanangamudi A (2010) Synthesis, anticancer and antioxidant activities of isoflavanone and 2,3-diarylchromanones. Eur J Med Chem 45:2447–2452

    Article  CAS  Google Scholar 

  • Karthikeyan K, Poornaprakash N, Selvakumar N, Jeyasubrmanian K (2009) Thermal properties and morphology of MgO–PVA nanocomposite film. J Nanostruct Polym Nanocompos 5:83–88

    Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  Google Scholar 

  • Krishnamoorthy K, Mohan R, Kim S-J (2011) Graphene oxide as a photocatalytic material. Appl Phys Lett 98:3–244101

    Article  Google Scholar 

  • Kumar A, Vemula PK, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241

    Article  CAS  Google Scholar 

  • Kumar N, Sanyal D, Sundaresan A (2009) Defect induced ferromagnetism in MgO nanoparticles studied by optical and positron annihilation spectroscopy. Chem Phys Lett 477:360–364

    Article  CAS  Google Scholar 

  • Kumari L, Li WZ, Vannoy CH, Leblanc RM, Wang DZ (2009) Synthesis, characterization and optical properties of Mg(OH)2 micro-/nanostructure and its conversion to MgO. Ceram Int 35:3355–3364

    Article  CAS  Google Scholar 

  • Li Y, Leung P, Yao L, Song QW, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63

    Article  CAS  Google Scholar 

  • Liu XF, Yang DZ, Guan YL, Li Z, Yao KD (2001) Antibacterial action of chitosan and carboxymethylated chitosan. J Appl Polym Sci 79:1324–1335

    Article  CAS  Google Scholar 

  • Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B (2006) Titanium dioxide (P25) produces reactive oxygen species in immortalized brain microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 40:4346–4352

    Article  CAS  Google Scholar 

  • Lovric J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227–1234

    Article  CAS  Google Scholar 

  • Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15:1708–1715

    Article  CAS  Google Scholar 

  • Mureinik R, Guy R (2003) Magnesium as a dietary supplement. Innovations in Food Technology August 16–17

  • Okouchi S, Murata R, Sugita H, Moriyoshi Y, Maeda N (1998) Calorimetric evaluation of the antimicrobial activities of calcined dolomite. J Antibact Antifung Agents 26:109–114

    Google Scholar 

  • Premanathan M, Karthikeyan K, Jeyasubramanian K, Manivannan G (2011) Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine 7:184–192

    Article  CAS  Google Scholar 

  • Pryor WA (1977) The involvement of free radicals in aging and carcinogenesis. In: Mathieu VJ (ed) Medicinal chemistry. Elsevier, Amsterdam, pp 59–331

    Google Scholar 

  • Pryor WA (1980) Methods of detecting free radicals and free radical mediated pathology in environment toxicology. In: Bhatnager RS (ed) Molecular basis of environmental toxicity. Ann Arbor Publishers Inc, Ann Arbor, pp 3–36

    Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    Article  CAS  Google Scholar 

  • Rezaei M, Khajenoori M, Nematollahi B (2011) Synthesis of high surface area nanocrystalline MgO by pluronic P123 triblock copolymer surfactant. Powder Technol 205:112–116

    Article  CAS  Google Scholar 

  • Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133:4077–4082

    CAS  Google Scholar 

  • Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42:321–324

    Article  CAS  Google Scholar 

  • Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Sawaki T, Hakoda A, Kawada E, Kokugan T, Shimizu M (2000) Antibacterial characteristics of magnesium oxide powder. World J Microbiol Biotechnol 16:187–194

    Article  CAS  Google Scholar 

  • Stankic S, Müller M, Diwald O, Sterrer M, Knözinger E, Bernardi J (2005) Size-dependent optical properties of MgO nanocubes. Angew Chem Int Ed 44:4917–4920

    Article  CAS  Google Scholar 

  • Sterrer M, Diwald O, Knozinger E (2000) Vacancies and electron deficient surface anions on the surface of MgO nanoparticles. J Phys Chem B 104:3601–3607

    Article  CAS  Google Scholar 

  • Sterrer M, Berger T, Diwald O, Knozinger E (2003) Energy transfer on the MgO surface monitored by UV induced H2 chemisorption. J Am Chem Soc 125:195–199

    Article  CAS  Google Scholar 

  • Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

  • Sudarshan NR, Hoover DG, Knorr D (1992) Antibacterial action of chitosan. Food Biotechnol 6:257–272

    Article  CAS  Google Scholar 

  • Ugur SS, Sarnsik M, Aktas AH, Ucar MC, Erden E (2010) Modifying of cotton fabric surface with nano-ZnO multilayer films by layer-by-layer deposition method. Nanoscale Res Lett 5:1204–1210

    Article  CAS  Google Scholar 

  • Veerapandian M, Yun KS (2011) Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications. Appl Microbiol Biotechnol 90:1655–1667

    Article  CAS  Google Scholar 

  • Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T, Sioutas C, Yeh JI, Wiesner MR, Nel AE (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6:1794–1807

    Article  CAS  Google Scholar 

  • Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646

    Article  CAS  Google Scholar 

  • Zhang LL, Jiang YH, Ding YL, Povey M, York D (2007) Investigation into the antibacterial behavior of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489

    Article  Google Scholar 

  • Zhang Q, Joo JB, Lu Z, Dahl M, Oliveira DQL, Ye M, Yin Y (2011) Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res 4:103–114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Management and the Principal of Mepco Schlenk Engineering College and NMSS Vellaichamy Nadar College for providing the necessary facilities to carry out the work. A part of this work was supported by a National Research Foundation of Korea Grant under contract number 2011-0015829.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariappan Premanathan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnamoorthy, K., Manivannan, G., Kim, S.J. et al. Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanopart Res 14, 1063 (2012). https://doi.org/10.1007/s11051-012-1063-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1063-6

Keywords

Navigation