Skip to main content
Log in

Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Biosynthesis of copper, zero-valent iron (ZVI), and silver nanoparticles using leaf extract of Dodonaea viscosa has been investigated in this report. There are no additional surfactants/polymers used as capping or reducing agents for these syntheses. The synthesized nanoparticles were characterized by UV–Vis spectroscopy, X-ray diffraction, atomic force microscopy, and high-resolution transmission electron microscopy. The phase analysis was performed using selected area electron diffraction. The pH dependence of surface plasmon resonance and subsequent size variation has been determined. The synthesized nanoparticles showed spherical morphology and the average size of 29, 27, and 16 nm for Cu, ZVI, and Ag nanoparticles, respectively. Finally, biosynthesized Cu, ZVI, and Ag nanoparticles were tested against human pathogens viz. Gram-negative Escherichia coli, Klebsiella pneumonia, Pseudomonas fluorescens and Gram-positive Staphylococcus aureus and Bacillus subtilis, and showed good antimicrobial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Chen DH, Hsieh CH (2002) Synthesis of nickel nanoparticles in aqueous cationic surfactant solutions. J Mater Chem 12:2412–2415

    Article  CAS  Google Scholar 

  • Daniel SCGK, Nehru K, Sivakumar M (2012) Rapid biosynthesis of silver nanoparticles using Eichornia crassipes and its antibacterial activity. Curr Nanosci 8(1):125–129

    Article  CAS  Google Scholar 

  • Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes water research 43:5243–5251

    CAS  Google Scholar 

  • Dubey SP, Lahtinen M, Sillanpaa M (2010) Green synthesis and characterizations of silver and gold nanoparticles using leaf extract of Rosa rugosa. Colloid Surf A 364:34–41

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Kleemann W (1993) Random-field induced antiferromagnetic, ferromagnetic and structural domain states. Int J Mod Phys B 7:2469

    Article  CAS  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927–4933

    Article  CAS  Google Scholar 

  • Linga Rao M, Savithramma N, Rukmini K, Suvarnalatha Devi P (2011) Antimicrobial activity of silver nanoparticles synthesized by using medicinal plants. Int J ChemTech Res 3(3):1394–1402

    Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517

    Article  CAS  Google Scholar 

  • Prema P, Selvarani M (2012) Inactivation of bacteria using chemically fabricated zero valent Iron nanoparticles. Int J Pharm Sci 03(01):37–41

    Google Scholar 

  • Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman A (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    Article  CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  CAS  Google Scholar 

  • Ryan JN, Harvey RW, Metge D, Elimelech M, Navigato T, Pieper AP (2002) Field and laboratory investigations of inactivation of viruses (PRD1 and MS-2) attached to iron oxide-coated quartz sand. Environ Sci Technol 36:2403–2413

    Article  CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170

    CAS  Google Scholar 

  • Sastry M, Ahmad A, Khan MI, Kumar R (2004) Microbial nanoparticle production. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley, Weinheim, pp 126–135

    Google Scholar 

  • Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12:237–246

    Article  CAS  Google Scholar 

  • Vaseem M, Lee KM, Kim DY, Hahn Y-B (2011) Parametric study of cost-effective synthesis of crystalline copper nanoparticles and their crystallographic characterization. Mater Chem Phys 125:334–341

    Article  CAS  Google Scholar 

  • Veerasamy R, Xin TZ, Gunasekaran S, Xiang TFW, Yang EFC, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J Saudi Chem Soc 15:113–120

    Article  CAS  Google Scholar 

  • Venkatesh S, Reddy YSR, Ramesh M, Swamy MM, Mahadevan N, Suresh B (2008) Pharmacognostical studies on Dodonaea viscosa. Afr J Pharm Pharmacol 2(4):083–088

    Google Scholar 

  • Wen J, Li J, Liu S, Chen QY (2011) Preparation of copper nanoparticles in a water/oleic acid mixed solvent via two-step reduction method. Colloids Surf A 373:329–335

    Article  Google Scholar 

  • Wiley BJ, Im SH, Li Z-Y, McLellan J, Siekkinen A, Younan Xia J (2006) Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Phys Chem B 110:15666–15675

    Article  CAS  Google Scholar 

  • Wu SH, Chen D-H (2004) Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions. J Colloids Interface Sci 273:165–169

    Article  CAS  Google Scholar 

  • Wu C, Brian Mosher P, Zeng TF (2006) One-step green route to narrowly dispersed copper nanocrystals. J Nanopart Res 8:965–969

    Article  CAS  Google Scholar 

  • Yoon KY, Byeon JH, Park JH, Hwang J (2007) Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ 373:572–575

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sivakumar.

Additional information

S. C. G. Kiruba Daniel and G. Vinothini contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

UV-Visible spectra of copper nanoparticles synthesized with different amounts of Dodonaea viscosa leaf extract at pH 10 (A) 1 ml (B) 2 ml (C) 3 ml (D) 4 ml (E) 5 ml

Fig. S2

UV- Visible spectra of Zero Valent Iron nanoparticles synthesized from 10 mM FeCl3 with different amount of Dodonaea viscosa extract at room temperature

Fig. S3

UV-Visible spectra of Ag Nps synthesized using different amounts of Dodonaea viscosa leaf extract after 5 h of reaction (A) 250 µl (B) 500 µl (C) 1 ml (D) 2 ml extract with 1 mM AgNO3

Fig. S4

UV-Visible spectra of copper nanoparticles synthesized using 5 ml of D. viscosa extract at different pH (1) pH 6, (2) pH 8 and (3) pH 10 with 5 ml 1 mM CuCl2 at 50˚C

Fig. S5

UV-Visible spectra of Ag Nps synthesized using 2 ml of D. viscosa leaf extract with 1 mM AgNO3 at different pH from 2 to 10 

Fig. S6

HRTEM images of Cu NP (A&B), ZVI NP (C&D) and Ag NP (E&F) taken at 10 and 50 nm as scale. (DOCX 6181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiruba Daniel, S.C.G., Vinothini, G., Subramanian, N. et al. Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J Nanopart Res 15, 1319 (2013). https://doi.org/10.1007/s11051-012-1319-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1319-1

Keywords

Navigation