Skip to main content
Log in

Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Monodisperse magnetite nanocubes with uniform particle size of about 80 nm have been synthesized in aqueous medium by single reaction sonochemical method using inexpensive and non-toxic metal salt (FeSO4·7H2O) as reactant. The crystallinity of the magnetite nanocube is enhanced by annealing treatment up to 600 °C with uniform shape and size distribution, after that a distortion in shape and a broad size distribution are obtained at 700 °C annealing temperature. The magnetic characterization of the nanoparticles reveals saturation magnetization of 91 emu/g at 5 K for as-synthesized sample and 94.8 emu/g for the sample which annealed at the temperature of 600 °C in a vacuum chamber. However, the saturation magnetization has been observed to decrease with further increase in annealing temperature and this has been attributed to the presence of a thin magnetic dead layer at the surface caused by shape anisotropy distortion and broken exchange bonds, and spin canting on the surface of the particles in addition to the formation of a small amount of maghemite phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Balasubramanian C, Khollam YB, Banerjee I, Bakare PP, Date SK, Das AK, Bhoraskar SV (2004) DC thermal arc-plasma preparation of nanometric and stoichiometric spherical magnetite (Fe3O4) powder. Mater Lett 58:3958–3962

    Article  Google Scholar 

  • Bang J-H, Suslick K-S (2010) Application of ultrasound to the synthesis of nanostructured materials. Adv Mater 22:1039–1059

    Article  CAS  Google Scholar 

  • Bate G (1980) Recording materials. In: Wohlfarth E-P (ed) Ferromagnetic materials, vol 2. North-Holland, Amsterdam

    Google Scholar 

  • Batlle M, Garcia del Muro M, Tejada J, Pfeifffer H, Goand P, Sinn E (1993) Magnetic study of M-type doped barium ferrite nanocrystalline powders. J Appl Phys 74:3333–3340

    Article  CAS  Google Scholar 

  • Black C-T, Murray C-B, Sandstrom R-L, Sun S (2000) Spin-dependent tunneling in self-assembled cobalt nanocrystal superlattices. Science 290:1131–1134

    Article  CAS  Google Scholar 

  • Cheng J-P, Ma R, Shi D, Liu F, Zhang X-B (2011) Rapid growth of magnetite nanoplates by ultrasonic irradiation at low temperature. Ultrason Sonochem 18:1038–1042

    Article  CAS  Google Scholar 

  • Dang F, Enomoto N, Hojo J, Enpuku K (2009) Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol–water mixed solvent. Ultrason Sonochem 16(2009):649–654

    Article  CAS  Google Scholar 

  • Dunlop D-J (1973) Superparamagnetic and single domain threshold size in magnetite. J Geophys Res 78:1780–1793

    Article  Google Scholar 

  • Enkin R-J, Dunlop D-J (1987) A micromagnetic study of pseudo-single-domain remanence in magnetite. J Geophys Res 92:12726–12740

    Article  CAS  Google Scholar 

  • Enkin R-J, Williams W (1994) Three dimensional micromagnetic analysis of stability in fine magnetic grains. J Geophys Res 99:611–618

    Article  Google Scholar 

  • Gao G, Liu X, Shi R, Zhou K, Shi Y, Ma R, Takayama-Muromachi E, Qiu G (2010) Shape-controlled synthesis and magnetic properties of monodisperse Fe3O4 nanocubes. Cryst Growth Des 10:2888–2894

    Article  CAS  Google Scholar 

  • Goss C-J (1988) Saturation magnetization, coercivity and lattice parameter changes in the system Fe3O4-γ-Fe2O3, and their relationship to structure. Phys Chem Miner 16:164–171

    Article  CAS  Google Scholar 

  • Gutierrez M, Henglein A, Dohrmann J-K (1987) Hydrogen atom reactions in the sonolysis of aqueous solutions. J Phys Chem 91:6687–6690

    Article  CAS  Google Scholar 

  • Han D-H, Wang J-P, Luo H-L (1994) Crystallite size effect on saturation magnetization of fine ferrimagnetic particles. J Magn Magn Mater 136:176–182

    Article  CAS  Google Scholar 

  • Henglein A, Gutierrez M (1988) Sonolysis of polymers in aqueous solution. New observations on pyrolysis and mechanical degradation. J Phys Chem 92:3705–3707

    Article  CAS  Google Scholar 

  • Kim K-C, Kim Y-S (2010) Post annealing effects on iron oxide nanoparticles synthesized by novel hydrothermal process. J Magn 15(4):179–184

    Article  Google Scholar 

  • Kim D-K, Zhang Y, Voit W, Rao K-V, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225:30–36

    Article  CAS  Google Scholar 

  • Kim D, Lee N, Park M, Kim BH, An K, Hyeon T (2009) Synthesis of uniform ferrimagnetic magnetite nanocubes. J Am Chem Soc 131:454–455

    Article  CAS  Google Scholar 

  • Kneller EF, Luborsky FE (1963) Particle size dependence of coercivity and remanence of single-domain particles. J Appl Phys 34:656–659

    Article  CAS  Google Scholar 

  • Kodama R-H, Berkowitz A-E, McNiff E-J, Foner S (1996) Surface spin disorder in NiFe2O4 nanoparticles. Phys Rev Lett 77:394–397

    Article  CAS  Google Scholar 

  • Kumar R-V, Koltypin Y, Cohen Y-S, Cohen Y, Aurbach D, Palchik O, Felner I, Gedanken A (2000) Preparation of amorphous magnetite nanoparticles embedded in polyvinyl alcohol using ultrasound radiation. J Mater Chem 10:1125–1129

    Article  CAS  Google Scholar 

  • Kumar L, Kumar P, Kar M (2012) Influence of Mn substitution on crystal structure and magnetocrystalline anisotropy of nanocrystalline Co1−x Mn x Fe2−2x Mn2x O4. Appl Nanosci. doi:10.1007/s13204-012-0071-2

    Google Scholar 

  • Lee Y, Lee J, Bae C, Park J, Noh H, Park J, Hyeon T (2005) Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv Funct Mater 15:503–509

    Article  CAS  Google Scholar 

  • Liao Z-M, Li Y-D, Xu J, Zhang J-M, Xia K, Yu D-P (2006) Spin-filter effect in magnetite nanowires. Nano Lett 6:1087–1091

    Article  CAS  Google Scholar 

  • Lu Z-L, Zou W-Q, Lv L-Y, Liu X-C, Li S-D, Zhu J-M, Zhang F-M, Du Y-W (2006) Large low-field magnetoresistance in nanocrystalline magnetite prepared by sol–gel method. J Phys Chem B 110:23817–23820

    Article  CAS  Google Scholar 

  • Makino K, Mossoba M-M, Riesz P (1982) Chemical effects of ultrasound on aqueous solution. Evidence for OH· and H· by spin trapping. J Am Chem Soc 104:3537–3539

    Article  CAS  Google Scholar 

  • Marchegiani G, Imperatori P, Mari A, Pilloni L, Chiolerio A, Allia P, Tiberto P, Suber L (2012) Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles. Ultrason Sonochem 19(2012):877–882

    Article  CAS  Google Scholar 

  • Mizukoshi Y, Shuto T, Masahashi N, Tanabe S (2009) Preparation of superparamagnetic magnetite nanoparticles by reverse precipitation method: contribution of sonochemically generated oxidants. Ultrason Sonochem 16:525–531

    Article  CAS  Google Scholar 

  • Ni Y, Ge X, Zhang Z, Ye Q (2002) Fabrication and characterization of the plate-shaped γ-Fe2O3 nanocrystals. Chem Mater 14(3):1048–1052

    Article  CAS  Google Scholar 

  • Oliveira L-C-A, Rios R-V-R-A, Fabris J-D, Garg V, Sapag K, Lago R-M (2002) Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon 40:2177–2183

    Article  CAS  Google Scholar 

  • Ozkaya T, Toprak M-S, Baykal A, Kavas H, Koseoglu Y, Aktas B (2009) Synthesis of Fe3O4 nanoparticles at 100 °C and its magnetic characterization. J Alloys compd 472:18–23

    Article  CAS  Google Scholar 

  • Patil R-P, Hankare P-P, Garadkar K-M, Sasikala R (2012) Effect of sintering temperature on structural, magnetic properties of lithium chromium ferrite. J Alloys Compd 523:66–71

    Article  CAS  Google Scholar 

  • Pauly M, Pichon B, Albouy P, Fleutot S, Leuvery C, Trassin M, Gallani J, Colin S (2011) Monolayer and multilayer assemblies of spherically and cubic-shaped iron oxide nanoparticles. J Mater Chem 21:16018–16027

    Article  CAS  Google Scholar 

  • Rajendran M, Pullar R-C, Bhattacharya A-K, Das D, Chintalapudi S-N, Majumdar C-K (2001) Magnetic properties of nanocrystalline CoFe2O4 powders prepared at room temperature: variation with crystallite size. J Magn Magn Mater 232:71–83

    Article  CAS  Google Scholar 

  • Roca A-G, Niznansky D, Poltierova V-J, Bittova B, Fernández G-M-A, Serna C-J, Morale M-P (2009) Magnetite nanoparticles with no surface spin canting. J Appl Phys 105:114309-7

    Google Scholar 

  • Roy S, Dubenko I, Edorth D-D, Ali N (2004) Size induced variations in structural and magnetic properties of double exchange Ls0.8Sr0.2MnO3−δ nano-ferromagnet. J Appl Phys 96:1202–1208

    Article  CAS  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: why is animal size so important?. Cambridge University Press, New York

    Book  Google Scholar 

  • Shafi K-V-P-M, Gedanken A, Prozorov R, Balogh J (1998) Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem Mater 10:3445–3450

    Article  CAS  Google Scholar 

  • Shinkai M, Ito A (2004) Functional magnetic particles for medical application. Adv Biochem Eng Biotechnol 91:191–220

    CAS  Google Scholar 

  • Sidhu P-S, Gilkes R-J, Posner A-M (1977) Mechanism of the low temperature oxidation of synthetic magnetites. J Inorg Nucl Chem 39(11):1953–1958

    Article  CAS  Google Scholar 

  • Sostaric J-Z, Paul M, Franz G (1995) Sonochemical dissolution of MnO2 colloids. J Chem Soc Faraday Trans 91:2843–2846

    Article  CAS  Google Scholar 

  • Suslick KS (ed) (1988) Ultrasound: it’s chemical, physical, and biological effects. VCH Publishers, New York

    Google Scholar 

  • Suslick K-S (1990) Sonochemistry. Science 247:1439–1445

    Article  CAS  Google Scholar 

  • Vargas J-M, Lima E, Socolovsky L-M, Knobel M, Zanchet D, Zysler R-D (2007) Annealing effects on 5 nm iron oxide nanoparticles. J Nanosci Nanotechnol 7(9):3313–3317

    Article  CAS  Google Scholar 

  • Vogel S (1988) Life’s devices: the physical world of animals and plants. Princeton University Press, Princeton

    Google Scholar 

  • Wu R, Qu J, Chen Y (2005) Magnetic powder MnO–Fe2O3 composite—a novel material for the removal of azo-dye from water. Water Res 39:630–638

    Article  CAS  Google Scholar 

  • Xiong Y, Ye J, Gu X, Chen Q-W (2007) Synthesis and assembly of magnetite nanocubes into flux-closure rings. J Phys Chem C 111:6998–7003

    Article  CAS  Google Scholar 

  • Xu J, Yang H, Fu W, Du K, Sui Y, Chen J, Zeng Y, Li M, Zou G (2006) Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J Magn Magn Mater 309:307–311

    Article  Google Scholar 

  • Yang H, Hasegawa D, Takahashi M, Ogawa T (2008a) Facile synthesis, phase transfer, and magnetic properties of monodisperse magnetite nanocubes. IEEE Trans Magn 44:3895–3898

    Article  CAS  Google Scholar 

  • Yang H, Ogawa T, Hasegawa D, Takahashi M (2008b) Synthesis and magnetic properties of monodisperse magnetite nanocubes. J Appl Phys 103:526–528

    Google Scholar 

  • Zeng H, Li J, Liu J-P, Wang Z-L, Sun S (2002) Exchanged-coupled nanocomposite magnets via nanoparticle self-assembly. Nature 420:395–398

    Article  CAS  Google Scholar 

  • Zhang D, Liu Z, Han S, Li C, Lei B, Stewart M-P, Tour J-M, Zhou C (2004) Magnetite (Fe3O4) core-shell nanowires: synthesis and magnetoresistance. Nano Lett 4:2151–2155

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by World Class University (WCU) program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (R32-20026). Also we should thank Dr. Hiroaki Kura from Tohoku University, Japan for helping us in measuring the magnetic properties of our sample.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CheolGi Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, M., Takahashi, M. & Kim, C. Facile sonochemical synthesis of high-moment magnetite (Fe3O4) nanocube. J Nanopart Res 15, 1354 (2013). https://doi.org/10.1007/s11051-012-1354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1354-y

Keywords

Navigation