Skip to main content
Log in

Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Iron sulfide nanoparticles Fe3S4 with the spinel-type crystal structure were synthesized by the polyol mediated process. The particle size depends on preparation conditions and varies from 9 to 20 nm. Mössbauer data have revealed that the dominating fraction of iron ions in the 9-nm sample is in the high-spin ferric state. This implies an occurrence of the cation vacancies in nonstoichiometric greigite. The stoichiometric phase of greigite Fe3S4 dominates in the 18-nm-size nanoparticles. Magnetic measurements have shown a ferrimagnetic behavior of all samples at temperatures between 78 and 300 K. The estimated value of magnetic moment of the stoichiometric greigite nanoparticles is about 3.5 μB per Fe3S4 unit. The Mössbauer spectra indicate a superparamagnetic behavior of small particles, and some fraction of superparamagnetic phase is observed in all samples synthesized which may be caused by the particle size distribution. The blocking temperatures of T B ≈ 230 and 250 K are estimated for the 9 and 14 nm particles, respectively. The Mössbauer parameters indicate a great degree of covalency in the Fe–S bonds and support the fast electron Fe3+ ⇆ Fe2+ exchange in the B-sites of greigite. An absence of the Verwey transition at temperatures between 90 and 295 K is established supporting a semimetal type of conductivity. The temperature and magnetic field dependences of the magnetic circular dichroism (MCD) of optical spectra were measured in Fe3S4 for the first time. The spectra differ substantially from that of the isostructural oxide Fe3O4. It is supposed that the MCD spectra of greigite nanoparticles result from the collective electron excitations in a wide band with superimposed peaks of the dd transitions in Fe ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Babinszki E, Márton E, Márton P, Ferenc Kiss L (2007) Widespread occurrence of greigite in the sediments of Lake Pannon: implications for environment and magnetostratigraphy. Palaeogeogr Palaeoclimatol Palaeoecol 252:626–636

    Article  Google Scholar 

  • Beinert H, Holm RH, Münck E (1997) Iron–sulfur clusters: nature’s modular, multipurpose structures. Science 277:653–659

    Article  CAS  Google Scholar 

  • Benning LG, Wilkin RT, Barnes HL (2000) Reaction pathways in the Fe–S system below 100°C. Chem Geol 167:25–51

    Article  CAS  Google Scholar 

  • Brack M (1993) The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches. Rev Mod Phys 65:677–732

    Article  CAS  Google Scholar 

  • Chang L, Roberts AP, Tang Y, Rainford BD, Muxworthy AR, Chen Q (2008) Fundamental magnetic parameters from pure synthetic greigite (Fe3S4). J Geophys Res 113:B06104

    Article  Google Scholar 

  • Chang L, Rainford BD, Stewart JR, Ritter C, Roberts AP, Tang Y, Chen Q (2009) Magnetic structure of greigite (Fe3S4) probed by neutron powder diffraction and polarized neutron diffraction. J Geophys Res 114:B07101

    Article  Google Scholar 

  • Chang YS, Savitha S, Sadhasivam S, Hsu CK, Lin FH (2010) Fabrication, characterization, and application of greigite nanoparticles for cancer hyperthermia. J Colloid Interface Sci 363(1):314–319

    Article  Google Scholar 

  • Chung A, Deen J, Lee JS, Meyyappan M (2010) Nanoscale memory devices. Nanotechnology 21. Article Number: 412001

  • Coey JMD, Spender MR, Morrish AH (1970) The magnetic structure of the spinel Fe3S4. Solid State Commun 8:1605–1608

    Article  CAS  Google Scholar 

  • De Heer WA (1993) The physics of simple metal clusters: experimental aspects and simple models. Rev Mod Phys 65:611–676

    Article  Google Scholar 

  • Dekkers MJ, Passier HF, Schoonen MAA (2000) Magnetic properties of hydrothermally synthesized greigite (Fe3S4) II. High- and low-temperature characteristics. Geophys J Int 141:809–819

    Article  Google Scholar 

  • Devey AJ, Grau-Crespo R, de Leeuw NH (2009) Electronic and magnetic structure of Fe3S4: GGA+U investigation. Phys Rev B 79:195126

    Article  Google Scholar 

  • Fleet ME (1981) The structure of magnetite. Acta Crystallogr Sect B Struct Sci 37:917–920

    Article  Google Scholar 

  • Fontijn WFJ, Van der Zaag PJ, Delivers MAC, Brabers VAM, Metselaar R (1997) Optical and magneto-optical polar Kerr spectra of Fe3O4 and Mg2+- or Al3+-substituted Fe3O4. Phys Rev B 56:5432

    Article  CAS  Google Scholar 

  • Gehring GA, Alshammari MS, Score DS, Neal JR, Mokhtari A, Fox AM (2012) Magneto-optic studies of magnetic oxides. J Magn Magn Mater 324:3422–3426

    Article  CAS  Google Scholar 

  • Gleiter H (2000) Nanostructured materials: basic concepts and microstructure. Acta Mater 48:1–29

    Article  CAS  Google Scholar 

  • Gubin SP, Koksharov YuA, Khomutov GB, Yurkov GYu (2005) Magnetic nanoparticles: preparation, structure and properties. Russ Chem Rev 74:489–520

    Article  CAS  Google Scholar 

  • Hobbs D, Hafner J (1999) Magnetism and magneto-structural effects in transition-metal sulphides. J Phys: Condens Matter 11:8197–8222

    Article  CAS  Google Scholar 

  • Hoffmann V, Stanjek H, Murad E (1993) Mineralogical, magnetic and Mössbauer data of symthite (Fe9S11). Stud Geophys Geod 37:366–381

    Article  Google Scholar 

  • Hunger S, Benning L (2007) Greigite: a true intermediate on the polysulfide pathway to pyrite. Geochem Trans 8:1–20

    Article  Google Scholar 

  • Jasperson SN, Schnatterly SE (1969) An improved method for high reflectivity ellipsometry based on a new polarization modulation technique. Rev Sci Instrum 40:761–767

    Article  Google Scholar 

  • Jiang W-T, Horng C-S, Roberts AP, Peacor DR (2001) Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth Planet Sci Lett 193:1–12

    Article  CAS  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin, p 23

    Google Scholar 

  • Kumar P (2010) Magnetic behavior of surface nanostructured 50-nm nickel thin films. Nanoscale Res Lett 5:1596–1602

    Article  CAS  Google Scholar 

  • Kumar P, Krishna MG, Bhattacharya AK (2009) Effect of microstructural evolution on magnetic properties of Ni thin films. Bull Mater Sci 32:263–270

    Article  CAS  Google Scholar 

  • Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113

    Article  CAS  Google Scholar 

  • Lotgering FK (1964) Ferromagnetic interactions in ferromagnetic sulphides, selenides and tellurides with spinel structure. In: Proceedings of international conference on magnetism, Nottingham, p 533

  • Lyubutin IS, Lin CR, Korzhetskiy YV, Dmitrieva TV, Chiang RK (2009) Mössbauer spectroscopy and magnetic properties of hematite/magnetite nanocomposites. J Appl Phys 106:034311

    Article  Google Scholar 

  • Maher BA, Thompson R (eds) (1999) Quaternary climates, environments and magnetism. Cambridge University Press, Cambridge

    Google Scholar 

  • Makarov EF, Marfunin AS, Mkrtchyan AR, Nadzharyan GN, Povitskii VA, Stukan RA (1969) Mössbauer spectroscopic study of magnetic properties of Fe3S4. Sov Phys Solid State 11:391–392

    Google Scholar 

  • Menyah A, O’Reilly W (1991) The magnetization process in monoclinic pyrrhotite (Fe7S8) particles containing few domains. Geophys J Int 104:387–399

    Article  Google Scholar 

  • Morice JA, Rees LVC, Rickard DT (1969) Mössbauer studies of iron sulphides. J Inorg Nucl Chem 31:3797–3802

    Article  CAS  Google Scholar 

  • Piekarz P, Parlinski K, Oles AM (2007) Order parameters in the Verwey phase transition. J Phys Conf Ser (JPCS) 92:012164

    Article  Google Scholar 

  • Posfai M, Buseck PR, Bazylinski DA, Frankel RB (1998) Iron sulfides from magnetotactic bacteria: structure, composition, and phase transitions. Am Miner 83:1469–1481

    CAS  Google Scholar 

  • Roberts AP, Weaver R (2005) Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth Planet Sci Lett 231:263–277

    Article  CAS  Google Scholar 

  • Roberts AP, Reynolds RL, Verosub KL, Adam DP (1996) Environmental magnetic implications of greigite (Fe3S4) formation in a 3 m.y. lake sediment record from Butte Valley, northern California. Geophys Res Lett 23:2859–2862

    Article  CAS  Google Scholar 

  • Roberts AP, Chang L, Rowan CJ, Horng C-S, Florindo F (2011) Magnetic properties of sedimentary greigite (Fe3S4): an update. Rev Geophys 49:1–46. doi:10.1029/2010RG000336 (RG1002)

    Article  Google Scholar 

  • Rowan CJ, Roberts AP (2006) Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth Planet Sci Lett 241:119–137

    Article  CAS  Google Scholar 

  • Skinner BJ, Erd RC, Grimaldi FS (1964) Greigite, the thio-spinel of iron; a new mineral. Am Miner 49:543–555

    CAS  Google Scholar 

  • Snowball I, Thompson R (1988) The occurrence of greigite in the sediments of Loch Lomond. J Quat Sci 3:121–125

    Article  Google Scholar 

  • Snowball I, Thompson R (1990) A stable chemical remanence in Holocene sediments. J Geophys Res 95:4471–4479

    Article  Google Scholar 

  • Spender MR, Coey JMD, Morrish AH (1972) The magnetic properties and Mossbauer spectra of synthetic samples of Fe3S4. Can J Phys 50:2313–2326

    Article  CAS  Google Scholar 

  • Stanjek H, Murad E (1994) Comparison of pedogenic and sedimentary greigite by X-ray diffraction and Mössbauer spectroscopy. Clays Clay Miner 42:451–454

    Article  CAS  Google Scholar 

  • Surerus KK, Kennedy MC, Beinert H, Münck E (1989) Mössbauer study of the inactive Fe3S4 and Fe3Se4 and the active Fe4Se4 forms of beef heart aconitase. Proc Natl Acad Sci 86(24):9846–9850

    Article  CAS  Google Scholar 

  • Uda M (1965) On the synthesis of greigite. Am Miner 50:1487–1489

    Google Scholar 

  • Vasilenko IV, Cador L, Quahab L, Pavlischuk VV (2010) Effect of production conditions on the size and magnetic characteristics of iron sulphide Fe3S nanoparticles. Theoret Exp Chem 46:322

    Article  CAS  Google Scholar 

  • Vasiliev I, Dekkers MJ, Krijgsman W, Franke C, Langereis CG, Mullender TAT (2007) Early diagenetic greigite as a recorder of the palaeomagnetic signal in Miocene–Pliocene sedimentary rocks of the Carpathian foredeep (Romania). Geophys J Int 171:613–629

    Article  Google Scholar 

  • Verwey EJW (1939) Electronic conduction in magnetite Fe3O4 and its transition point at low temperatures. Nature 144:327–328

    Article  CAS  Google Scholar 

  • Wang J, Shi-He C, Wei Wu, Zhao G-M (2011a) The Curie temperature and magnetic exchange energy in half-metallic greigite Fe3S4. Phys Scr 83:045702

    Article  Google Scholar 

  • Wang J, Gan JA, Wong YC, Berndt CC (2011) A review of preparation, properties and applications of rare earth magnetic thin films. In: Volkerts JP (ed) Magnetic thin films: properties, performance and applications. Series: Materials science and technologies condensed matter research and technology, Nova Science Publishers, pp 1-69. ISBN: 978-1-61209-302-4

  • Yamaguchi S, Wada H (1973) Fe2S3 of the spinel type structure with lattice defect. Kristall und Technik 8(9):1017–1019

    Article  CAS  Google Scholar 

  • Zhang ZJ, Chen XY (2009) Magnetic greigite (Fe3S4) nanomaterials: shape-controlled solvothermal synthesis and their calcination conversion into hematite (α-Fe2O3) nanomaterials. J Alloys Compd 488:339

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Russian Foundation for Basic Research (grant no. 11-02-92001) and the Russian Academy of Sciences under the Program “Nanotechnology and Nanomaterials” (grant no. 24-3.1). We also thank the National Science Council of Taiwan (NSC100-2923-M-218-001-MY3) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. S. Lyubutin, Chun-Rong Lin or S. G. Ovchinnikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lyubutin, I.S., Starchikov, S.S., Lin, CR. et al. Magnetic, structural, and electronic properties of iron sulfide Fe3S4 nanoparticles synthesized by the polyol mediated process. J Nanopart Res 15, 1397 (2013). https://doi.org/10.1007/s11051-012-1397-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1397-0

Keywords

Navigation