Skip to main content
Log in

Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Multiwall carbon nanotubes (MWCNTs)/polystyrene composites were fabricated by solution processing route using non-covalently functionalized (polyaniline coated) MWCNTs. These composites exhibit an extremely low percolation threshold (0.12 vol.% MWCNT) along with micro porosity and are found to have potential applications in the areas of electromagnetic interference (EMI) shielding and electrostatic dissipation (ESD) with an ESD time of 0.78 s and shielding effectiveness of −23.3 dB (>99 % attenuation). The EMI shielding was found to be dominated by absorption (−18.7 dB) with a nominal contribution from reflection (−4.6 dB) that can explained in terms of multiple internal reflection phenomenon driven by high conductivity and the porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Single-walled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12:750–753

    Article  CAS  Google Scholar 

  • Baughman RH, Zakhidov AA, de Heer A (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  CAS  Google Scholar 

  • Blanchet GB, Fincher CR, Gao F (2003) Polyaniline nanotube composites: a high-resolution printable conductor. Appl Phys Lett 82:1290–1292

    Article  CAS  Google Scholar 

  • Che RC, Peng LM, Duan XF, Chen XF, Liang XL (2004) Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv Mater 16:401–405

    Article  CAS  Google Scholar 

  • Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285

    Article  CAS  Google Scholar 

  • Colaneri NF, Shacklette LW (1992) EMI shielding measurements of conductive polymer blends. IEEE Trans Instrum Meas 41:291–297

    Article  Google Scholar 

  • Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials. Nanoscale Res Lett 6:137. doi:10.1186/1556-276X-6-137

    Article  Google Scholar 

  • Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials. Angew Chem Int Ed 40:2591–2611

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Joo J, Epstein AJ (1994) Electromagnetic radiation shielding by intrinsically conducting polymers. Appl Phys Lett 65:2278–2280

    Article  CAS  Google Scholar 

  • Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Pejaković DA, Yoo JW, Epstein AJ (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84:589–591

    Article  CAS  Google Scholar 

  • Li N, Huang Y, Du V, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6:1141–1145

    Article  CAS  Google Scholar 

  • Li Y, Chen C, Li J-T, Zhang S, Ni Y, Cai S, Huang J (2010) Enhanced dielectric constant for efficient electromagnetic shielding based on carbon-nanotube-added styrene acrylic emulsion based composite. Nanoscale Res Lett 5:1170–1176

    Article  CAS  Google Scholar 

  • MacDiarmid AG (2001) Synthetic metals: a novel role for organic polymers. Angew Chem Int Ed 40:2581–2590

    Article  CAS  Google Scholar 

  • Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364:303–308

    Article  CAS  Google Scholar 

  • Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83:2928–2930

    Article  CAS  Google Scholar 

  • Saini P, Arora M (2012) In: Gomes AD (ed) New polymers for special applications. Intech., Croatia. doi:10.5772/48779. http://www.intechopen.com/download/pdf/38964

  • Saini P, Jalan R, Dhawan SK (2008) Synthesis and characterization of processable polyaniline doped with novel dopant NaSIPA. J Appl Polym Sci 108:1437–1446

    Article  CAS  Google Scholar 

  • Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2009) Polyaniline/MWCNT composites for microwave absorption and EMI shielding. Mater Chem Phys 113:919–926

    Article  CAS  Google Scholar 

  • Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK (2011) Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth Met 161:1522–1526

    Article  CAS  Google Scholar 

  • Saini P, Choudhary V, Dhawan SK (2012a) Improved microwave absorption and electrostatic charge dissipation efficiencies of conducting polymer grafted fabrics prepared via in situ polymerization. Polym Adv Technol 23:343–349

    Article  CAS  Google Scholar 

  • Saini P, Choudhary V, Vijayan N, Kotnala RK (2012b) improved electromagnetic interference shielding response of poly (aniline)-coated fabrics containing dielectric and magnetic nanoparticles. J Phys Chem C 116:13403–13412

    Article  CAS  Google Scholar 

  • Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899

    Article  CAS  Google Scholar 

  • Sangermano M, Pegel S, Pötschke P, Voit B (2008) Antistatic epoxy coatings with carbon nanotubes obtained by cationic photopolymerization. Macromol Rapid Commun 29:396–400

    Article  CAS  Google Scholar 

  • Schulz RB, Plantz VC, Brush DR (1988) Shielding theory and practice. IEEE Trans 30:187–201

    Google Scholar 

  • Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers. Angew Chem Int Ed 40:2574–2580

    Article  Google Scholar 

  • Singh BP, Prabha, Saini P, Gupta T, Garg P, Kumar G, Pandey I, Pandey S, Seth RK, Dhawan SK, Mathur RB (2011) Designing of multiwalled carbon nanotubes reinforced low density polyethylene nanocomposites for suppression of electromagnetic radiation. J Nanopart Res 13:7065–7074

    Article  CAS  Google Scholar 

  • Stafstrom S, Bredas JL, Epstein AJ, Woo HS, Tanner DB, Huang WS, MacDiarmid AG (1987) Polaron lattice in highly conducting polyaniline: theoretical and optical studies. Phys Rev Lett 59:1464–1467

    Article  CAS  Google Scholar 

  • Ting TH, Jau YN, Yu RP (2012) Microwave absorbing properties of polyaniline/multi-walled carbon nanotube composites with various polyaniline contents. Appl Surf Sci 258:3184–3190

    Article  CAS  Google Scholar 

  • Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Novel carbon nanotube—polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5:2131–2134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Director NPL for his keen interest in work. We are also thankful to Mr. K.N. Sood for recording SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parveen Saini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1208 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saini, P., Choudhary, V. Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J Nanopart Res 15, 1415 (2013). https://doi.org/10.1007/s11051-012-1415-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-1415-2

Keywords

Navigation