Skip to main content
Log in

Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

An aerosol process was developed for synthesis and delivery of nanoparticles for living watermelon plant foliar uptake. This is an efficient technique capable of generating nanoparticles with controllable particle sizes and number concentrations. Aerosolized nanoparticles were easily applied to leaf surfaces and enter the stomata via gas uptake, avoiding direct interaction with soil systems, eliminating potential ecological risks. The uptake and transport of nanoparticles inside the watermelon plants were investigated systematically by various techniques, such as elemental analysis by inductively coupled plasma mass spectrometry and plant anatomy by transmission electron microscopy. The results revealed that certain fractions of nanoparticles (d p  < 100 nm) generated by the aerosol process could enter the leaf following the stomatal pathway, then pass through the stem, and reach the root of the watermelon plants. The particle size and number concentration played an important role in nanoparticle translocation inside the plants. In addition, the nanoparticle application method, working environment, and leaf structure are also important factors to be considered for successful plant foliar uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdulrahaman AA, Oyedotun RA, Oladele FA (2011) Diagnostic Significance of Leaf Epidermal Features in the Family Cucurbitaceae. Insight Bot 1(2):22–27

    Article  Google Scholar 

  • Bergin MH, Greenwald R, Xu J, Berta Y, Chameides WL (2001) Influence of aerosol dry deposition on photosynthetically active radiation available to plants: a case study in the Yangtze delta region of China. Geophys Res Lett 28(18):3605–3608

    Article  CAS  Google Scholar 

  • Birbaum K, Brogioli R, Schellenberg M, Martinoia E, Stark WJ, Gunther D, Limbach LK (2010) No evidence for cerium dioxide nanoparticle translocation in Maize plants. Environ Sci Technol 44(22):8718–8723

    Article  CAS  Google Scholar 

  • Biswas P, An WJ and Wang W-N (2012) Engineered nanoparticles and the environment: inadvertently and intentionally produced, 1st edn. In: Barnard S and Guo H (ed) Nature’s Nanostructures. Pan Stanford, Singapore, pp 443–476

  • Castiglione MR, Giorgetti L, Geri C, Cremonini R (2011) The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. J Nanopart Res 13(6):2443–2449

    Article  Google Scholar 

  • Choi K-S, Lee S-H and Choi H-S (2005) Liquid Composition for promoting plant growth, which includes nano-particle titanium Dioxide. US 20050079977 A1, 14 April 2005

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21(10):1166–1170

    Article  CAS  Google Scholar 

  • Corradini E, de Moura MR, Mattoso LHC (2010) A preliminary study of the incorparation of NPK fertilizer into chitosan nanoparticles. Expr Polym Lett 4(8):509–515

    Article  CAS  Google Scholar 

  • Corredor E, Testillano PS, Coronado MJ, Gonzalez-Melendi P, Fernandez-Pacheco R, Marquina C, Ibarra MR, de la Fuente J, Rubiales D, Perez-De-Luque A, Risueno MC (2009) Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identication. BMC Plant Biol 9:45

    Article  Google Scholar 

  • Da Silva LC, Oliva MA, Azevedo AA, De Araujo JM (2006) Responses of resting a plant species to pollution from an iron pelletization factory. Water Air Soil Poll 175(1–4):241–256

    Article  Google Scholar 

  • Du WC, Sun YY, Ji R, Zhu JG, Wu JC, Guo HY (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13(4):822–828

    Article  CAS  Google Scholar 

  • Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces—further evidence for a stomatal pathway. Physiol Plantarum 132(4):491–502

    Article  CAS  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plantarum 134(1):151–160

    Article  CAS  Google Scholar 

  • Eiden R, Burkhardt J, Burkhardt O (1994) Atmospheric Aerosol-particles and their role in the formation of dew on the surface of plant-leaves. J Aerosol Sci 25(2):367–376

    Article  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401

    Article  CAS  Google Scholar 

  • Gewin V (2006) Nanotech’s big issue. Nature 443(7108):137

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803

    Article  CAS  Google Scholar 

  • Gonzalez-Melendi P, Fernandez-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueno MC, Marquina C, Ibarra MR, Rubiales D, Perez-De-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101(1):187–195

    Article  CAS  Google Scholar 

  • Grantz DA, Garner JHB, Johnson DW (2003) Ecological effects of particulate matter. Environ Int 29(2–3):213–239

    Article  CAS  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138A

    Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li ZR, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  CAS  Google Scholar 

  • Lin DH, Xing BS (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585

    Article  CAS  Google Scholar 

  • Liu QL, Chen B, Wang QL, Shi XL, Xiao ZY, Lin JX, Fang XH (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010

    Article  CAS  Google Scholar 

  • Luttge U, Higinbotham N (1979) Transport in Plants. Springer-Verlag, New York

    Book  Google Scholar 

  • Mashayek A, Ashgriz N (2011) Dynamics of liquid droplets. In: Ashgriz N (ed) Handbook of atomization and sprays—theory and applications. Springer, New York

    Google Scholar 

  • Maynard AD, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdorster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444(7117):267–269

    Article  CAS  Google Scholar 

  • Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517

    Article  CAS  Google Scholar 

  • Nadakavukaren M, McCracken D (1985) Botany: an introduction to plant biology. West, New York

    Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2008) CRC 675—current trends in phytosynthesis of metal nanoparticles. Crit Rev Biotechnol 28(4):277–284

    Article  CAS  Google Scholar 

  • Rajesh R, Jaya L, Niranjan K, Vijay M, Sahebrao K (2009) Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Curr Nanosci 5(1):117–122

    Article  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic Aerosol.4. Particulate abrasion products from leaf surfaces of urban plants. Environ Sci Technol 27(13):2700–2711

    Article  CAS  Google Scholar 

  • Sahu M, Suttiponparnit K, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Characterization of doped TiO2 nanoparticle dispersions. Chem Eng Sci 66(15):3482–3490

    Article  CAS  Google Scholar 

  • Shimada M, Wang WN, Okuyama K, Myojo T, Oyabu T, Morimoto Y, Tanaka I, Endoh S, Uchida K, Ehara K, Sakurai H, Yamamoto K, Nakanishi J (2009) Development and evaluation of an aerosol generation and supplying system for inhalation experiments of manufactured nanoparticles. Environ Sci Technol 43(14):5529–5534

    Article  CAS  Google Scholar 

  • Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig J Nanomater Bios 3(3):115–122

    Google Scholar 

  • Sunada K, Kikuchi Y, Hashimoto K, Fujishima A (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32(5):726–728

    Article  CAS  Google Scholar 

  • Suttiponparnit K, Jiang JK, Sahu M, Suvachittanont S, Charinpanitkul T, Biswas P (2011) Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Res Lett 6:27

    Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  CAS  Google Scholar 

  • Uzu G, Sobanska S, Sarret G, Munoz M, Dumat C (2010) Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ Sci Technol 44(3):1036–1042

    Article  CAS  Google Scholar 

  • Wang WN, Widiyastuti W, Lenggoro IW, Kim TO, Okuyama K (2007a) Photoluminescence optimization of luminescent nanocomposites fabricated by spray pyrolysis of a colloid-solution precursor. J Electrochem Soc 154(4):J121–J128

    Article  CAS  Google Scholar 

  • Wang WN, Widiyastuti W, Ogi T, Lenggoro IW, Okuyama K (2007b) Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors. Chem Mater 19(7):1723–1730

    Article  CAS  Google Scholar 

  • Wang WN, Purwanto A, Lenggoro IW, Okuyama K, Chang H, Jang HD (2008) Investigation on the correlations between droplet and particle size distribution in ultrasonic spray pyrolysis. Ind Eng Chem Res 47(5):1650–1659

    Article  CAS  Google Scholar 

  • Wang SH, Kurepa J, Smalle JA (2011) Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana. Plant Cell Environ 34(5):811–820

    Article  CAS  Google Scholar 

  • Willmer C and Fricker M (1996) Stomata. Chapman and Hall, London

  • Zhang ZY, He X, Zhang HF, Ma YH, Zhang P, Ding YY, Zhao YL (2011) Uptake and distribution of ceria nanoparticles in cucumber plants. Metallomics 3(8):816–822

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monitor 10(6):713–717

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in part at the Nano Research Facility (NRF), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by the National Science Foundation under Grant No. ECS-0335765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratim Biswas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1237 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, WN., Tarafdar, J.C. & Biswas, P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15, 1417 (2013). https://doi.org/10.1007/s11051-013-1417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1417-8

Keywords

Navigation