Skip to main content
Log in

Finite size effects on the magnetocrystalline anisotropy energy in Fe magnetic nanowires from first principles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The geometric and the electronic structures, the magnetic moments, and the magnetocrystalline anisotropy energy of bcc-Fe nanowires with z-axis along the (110) direction are calculated in the framework of ab initio theories. In particular, we report a systematic study of free standing nanowires with geometries and sizes ranging from diatomic to 1 nm wide with 31 atoms per unit cell. We found that for nanowires with less than 14 atoms per unit cell, the ground-state structure is body-centered tetragonal. We also calculated the contributions of the dipolar magnetic energy to the magnetic anisotropy energy and found that in some cases, this contribution overcomes the magnetocrystalline part, determining thereby the easy axis direction. These results emphasize the importance and competition between both contributions in low dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blöchl P (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Article  Google Scholar 

  • Dorantes-Dávila J, Pastor GM (1998) Magnetic anisotropy of one-dimensional nanostructures of transition metals. Phys Rev Lett 81:208–211

    Article  Google Scholar 

  • Dorantes-Dávila J, Pastor GM (2005) Magnetic reorientation transitions along the crossover from one-dimensional to two-dimensional transition-metal nanostructures. Phys Rev B 72:085427

    Article  Google Scholar 

  • Gambardella P, Dallmeyer A, Maiti K, Malagoli M, Eberhardt W, Kern K, Carbone C et al (2002) Ferromagnetism in one-dimensional monatomic metal chains. Nature 416(6878):301–304

    Article  CAS  Google Scholar 

  • Hauschild J, Elmers HJ, Gradmann U (1998) Dipolar superferromagnetism in monolayer nanostripes of fe(110) on vicinal w(110) surfaces. Phys Rev B 57:R677–R680

    Article  CAS  Google Scholar 

  • Hobbs D, Kresse G, Hafner J (2000) Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys Rev B 62(17):11556–11570

    Article  CAS  Google Scholar 

  • Hong J, Wu RQ (2003) First principles calculations of magnetic anisotropy energy of co monatomic wires. Phys Rev B 67:020406

    Article  Google Scholar 

  • Kang YJ, Choi J, Moon CY, Chang KJ (2005) Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms. Phys Rev B 71:115441

    Article  Google Scholar 

  • Kresse G, Furthmüller J (1996a) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  • Kresse G, Furthmüller J (1996b) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186

    Article  CAS  Google Scholar 

  • Kresse G, Hafner J (1993) Ab initio molecular dynamics for liquid metals. Phys Rev B 47(1):558–561

    Article  CAS  Google Scholar 

  • Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269

    Article  CAS  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758–1775

    Article  CAS  Google Scholar 

  • Mokrousov Y, Bihlmayer G, Blügel S (2005) Full-potential linearized augmented plane-wave method for one-dimensional systems: Gold nanowire and iron monowires in a gold tube. Phys Rev B 72:045402

    Article  Google Scholar 

  • Mokrousov Y, Bihlmayer G, Heinze S, Blügel S (2006) Giant magnetocrystalline anisotropies of 4d transition-metal monowires. Phys Rev Lett 96:147201

    Article  CAS  Google Scholar 

  • Muñoz F, Mejía-López J, Pérez-Acle T, Romero A (2010) Uniaxial magnetic anisotropy energy of fe wires embedded in carbon nanotubes. ACS Nano 4(5):2883–2891

    Article  Google Scholar 

  • Perdew J, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    Article  CAS  Google Scholar 

  • Shen J, Skomski R, Klaua M, Jenniches H, Manoharan SS, Kirschner J (1997) Magnetism in one dimension: Fe on cu(111). Phys Rev B 56:2340–2343

    Article  CAS  Google Scholar 

  • Shick A, Máca F, Oppeneer P (2004) Anomalous ferromagnetism of a monatomic co wire at the pt(111) surface step edge. Phys Rev B 69:212410

    Article  Google Scholar 

  • Thurn-Albrecht T, Schotter J, Kästle G, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black C, Tuominen M, Russell T (2000) Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 290(5499):2126–2129

    Article  CAS  Google Scholar 

  • Tung JC, Guo GY (2007) Systematic ab initio study of the magnetic and electronic properties of all 3d transition metal linear and zigzag nanowires. Phys Rev B 76:094413

    Article  Google Scholar 

  • Tung JC, Guo GY (2010) Magnetic moment and magnetic anisotropy of linear and zigzag 4d and 5d transition metal nanowires: First-principles calculations. Phys Rev B 81:094422

    Article  Google Scholar 

  • Újfalussy B, Lazarovits B, Szunyogh L, Stocks GM, Weinberger P (2004) Ab initio spin dynamics applied to nanoparticles: Canted magnetism of a finite Co chain along a Pt(111) surface step edge. Phys Rev B 70:100404

    Article  Google Scholar 

  • Weissmann M, García G, Kiwi M, Ramírez R, Fu C-C (2006) Theoretical study of iron-filled carbon nanotubes. Phys Rev B 73:125435

    Article  Google Scholar 

  • Zelený M, Šob M, Hafner J (2009) Ab initio density functional calculations of ferromagnetism in low-dimensional nanostructures: From nanowires to nanorods. Phys Rev B 79:134421

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from FONDECYT 1100365 (J.M.-L.) and 11110510 (F.M.), Grant ICM P10-061-F by ”Fondo de Innovación para la competitividad-MINCOM (J.M.-L and F.M.), Financiamiento Basal para Centros Científicos y Tecnológicos de Excelencia, under project FB0807 (J.M.-L.) and CONACYT (Mexico) through grants 61417 (J.L.M.), J-59853-F (J.L.M.), and J-152153-F (A.H.R). A.H.R. also acknowledges the support from the binational program TAMU-CONACYT and the Marie-Curie Intra-European Fellowship and the support of CONACYT-Mexico for the sabbatical program. The use of computational resources from the CNS, IPICyT is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Mejía-López.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, F., Romero, A.H., Mejía-López, J. et al. Finite size effects on the magnetocrystalline anisotropy energy in Fe magnetic nanowires from first principles. J Nanopart Res 15, 1524 (2013). https://doi.org/10.1007/s11051-013-1524-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1524-6

Keywords

Navigation