Skip to main content
Log in

TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Anatase TiO2 nanoparticles in situ grown on nitrogen-doped, reduced graphene oxide (rGO) have been successfully synthesized as an anode material for the lithium ion battery. The nanosized TiO2 particles were homogeneously distributed on the reduced graphene oxide to inhibit the restacking of the neighbouring graphene sheets. The obtained TiO2/N-rGO composite exhibits improved cycling performance and rate capability, indicating the important role of reduced graphene oxide, which not only facilitates the formation of uniformly distributed TiO2 nanocrystals, but also increases the electrical conductivity of the composite material. The introduction of nitrogen on the reduced graphene oxide has been proved to increase the conductivity of the reduced graphene oxide and leads to more defects. A disordered structure is thus formed to accommodate more lithium ions, thereby further improving the electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4(5):366–377. doi:10.1038/nmat1368

    Article  CAS  Google Scholar 

  • Borghols WJH, Lutzenkirchen-Hecht D, Haake U, van Eck ERH, Mulder FM, Wagemaker M (2009) The electronic structure and ionic diffusion of nanoscale LiTiO2 anatase. PCCP 11(27):5742–5748

    Article  CAS  Google Scholar 

  • Cai D, Lian P, Zhu X, Liang S, Yang W, Wang H (2012) High specific capacity of TiO2–graphene nanocomposite as an anode material for lithium-ion batteries in an enlarged potential window. Electrochim Acta 74:65–72. doi:10.1016/j.electacta.2012.03.170

    Article  CAS  Google Scholar 

  • Cao H, Li B, Zhang J, Lian F, Kong X, Qu M (2012) Synthesis and superior anode performance of TiO2@reduced graphene oxide nanocomposites for lithium ion batteries. J Mater Chem 22(19):9759–9766. doi:10.1039/C2JM00007E

    Article  CAS  Google Scholar 

  • Fan X, Zheng WT, Kuo J-L (2012) Adsorption and diffusion of Li on pristine and defective graphene. ACS Appl Mater Interfaces 4(5):2432–2438. doi:10.1021/am3000962

    Article  CAS  Google Scholar 

  • Han H, Song T, Bae J-Y, Nazar LF, Kim H, Paik U (2011a) Nitridated TiO2 hollow nanofibers as an anode material for high power lithium ion batteries. Energy Environ Sci 4(11):4532–4536. doi:10.1039/C1EE02333K

    Article  CAS  Google Scholar 

  • Han P, Yue Y, Liu Z, Xu W, Zhang L, Xu H, Dong S, Cui G (2011b) Graphene oxide nanosheets/multi-walled carbon nanotubes hybrid as an excellent electrocatalytic material towards VO2+/VO2 + redox couples for vanadium redox flow batteries. Energy Environ Sci 4(11):4710–4717. doi:10.1039/C1EE01776D

    Article  CAS  Google Scholar 

  • Hu YS, Kienle L, Guo YG, Maier J (2006) High lithium electroactivity of nanometer-sized rutile TiO2. Adv Mater 18(11):1421–1426. doi:10.1002/adma.200502723

    Article  Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339. doi:10.1021/ja01539a017

    Article  CAS  Google Scholar 

  • Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ (1996) Electrochemical and photoelectrochemical investigation of single-crystal anatase. J Am Chem Soc 118(28):6716–6723. doi:10.1021/ja954172l

    Article  CAS  Google Scholar 

  • Kim J, Cho J (2007) Rate characteristics of anatase TiO2 nanotubes and nanorods for lithium battery anode materials at room temperature. J Electrochem Soc 154(6):A542–A546. doi:10.1149/1.2724756

    Article  CAS  Google Scholar 

  • Kim S-W, Han TH, Kim J, Gwon H, Moon H-S, Kang S-W, Kim SO, Kang K (2009) Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. ACS Nano 3(5):1085–1090. doi:10.1021/nn900062q

    Article  CAS  Google Scholar 

  • Kim CH, Kim B-H, Yang KS (2012) TiO2 nanoparticles loaded on graphene/carbon composite nanofibers by electrospinning for increased photocatalysis. Carbon 50(7):2472–2481. doi:10.1016/j.carbon.2012.01.069

    Article  CAS  Google Scholar 

  • Kitaura R, Imazu N, Kobayashi K, Shinohara H (2008) Fabrication of metal nanowires in carbon nanotubes via versatile nano-template reaction. Nano Lett 8(2):693–699. doi:10.1021/nl073070d

    Article  CAS  Google Scholar 

  • Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nano 3(2):101–105. doi:10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  • Li D, Shi D, Chen Z, Liu H, Jia D, Guo Z (2013) Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries. RSC Adv 3(15):5003–5008

    Article  CAS  Google Scholar 

  • Liu R, Wu D, Feng X, Müllen K (2010) Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew Chem Int Ed 49(14):2565–2569. doi:10.1002/anie.200907289

    Article  CAS  Google Scholar 

  • Liu J, Chen JS, Wei X, Lou XW, Liu X-W (2011) Sandwich-like, stacked ultrathin titanate nanosheets for ultrafast lithium storage. Adv Mater 23(8):998–1002. doi:10.1002/adma.201003759

    Article  Google Scholar 

  • Ma C, Shao X, Cao D (2012) Nitrogen-doped graphene nanosheets as anode materials for lithium ion batteries: a first-principles study. J Mater Chem 22(18):8911–8915. doi:10.1039/C2JM00166G

    Article  CAS  Google Scholar 

  • Mo D, Ye D (2009) Surface study of composite photocatalyst based on plasma modified activated carbon fibers with TiO2. Surf Coat Technol 203(9):1154–1160. doi:10.1016/j.surfcoat.2008.10.007

    Article  CAS  Google Scholar 

  • Mousavi H, Moradian R (2011) Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sci 13(8):1459–1464. doi:10.1016/j.solidstatesciences.2011.03.008

    Article  CAS  Google Scholar 

  • Paek S-M, Yoo E, Honma I (2008) Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure. Nano Lett 9(1):72–75. doi:10.1021/nl802484w

    Article  Google Scholar 

  • Park M-H, Cho Y, Kim K, Kim J, Liu M, Cho J (2011) Germanium nanotubes prepared by using the Kirkendall effect as anodes for high-rate lithium batteries. Angew Chem Int Ed 50(41):9647–9650. doi:10.1002/anie.201103062

    Article  CAS  Google Scholar 

  • Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499. doi:10.1038/35035045

    Article  CAS  Google Scholar 

  • Qiu Y, Yan K, Yang S, Jin L, Deng H, Li W (2010) Synthesis of size-tunable anatase TiO2 nanospindles and their assembly into anatase@titanium oxynitride/titanium nitride–graphene nanocomposites for rechargeable lithium ion batteries with high cycling performance. ACS Nano 4(11):6515–6526. doi:10.1021/nn101603g

    Article  CAS  Google Scholar 

  • Rao AM, Eklund PC, Bandow S, Thess A, Smalley RE (1997) Evidence for charge transfer in doped carbon nanotube bundles from Raman scattering. Nature 388(6639):257–259

    Article  CAS  Google Scholar 

  • Saravanan K, Ananthanarayanan K, Balaya P (2010) Mesoporous TiO2 with high packing density for superior lithium storage. Energy Environ Sci 3(7):939–948. doi:10.1039/C003630G

    Article  CAS  Google Scholar 

  • Shen J, Hu Y, Shi M, Lu X, Qin C, Li C, Ye M (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21(15):3514–3520. doi:10.1021/cm901247t

    Article  CAS  Google Scholar 

  • Shin WH, Jeong HM, Kim BG, Kang JK, Choi JW (2012) Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett 12(5):2283–2288. doi:10.1021/nl3000908

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286. doi:10.1038/nature04969

    Article  CAS  Google Scholar 

  • Subramanian V, Karki A, Gnanasekar KI, Eddy FP, Rambabu B (2006) Nanocrystalline TiO2 (anatase) for Li-ion batteries. J Power Sour 159(1):186–192. doi:10.1016/j.jpowsour.2006.04.027

    Article  CAS  Google Scholar 

  • Wagemaker M, Kentgens APM, Mulder FM (2002) Equilibrium lithium transport between nanocrystalline phases in intercalated TiO2 anatase. Nature 418(6896):397–399. doi:10.1038/nature00901

    Article  CAS  Google Scholar 

  • Wagemaker M, van Well AA, Kearley GJ, Mulder FM (2004) The life and times of lithium in anatase TiO2. Solid State Ionics 175(1–4):191–193. doi:10.1016/j.ssi.2003.11.030

    Article  CAS  Google Scholar 

  • Wang Y, Wu M, Zhang WF (2008) Preparation and electrochemical characterization of TiO2 nanowires as an electrode material for lithium-ion batteries. Electrochim Acta 53(27):7863–7868. doi:10.1016/j.electacta.2008.05.068

    Article  CAS  Google Scholar 

  • Wang D, Choi D, Li J, Yang Z, Nie Z, Kou R, Hu D, Wang C, Saraf LV, Zhang J, Aksay IA, Liu J (2009) Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3(4):907–914. doi:10.1021/nn900150y

    Article  CAS  Google Scholar 

  • Wang Y, Shao Y, Matson DW, Li J, Lin Y (2010a) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4(4):1790–1798. doi:10.1021/nn100315s

    Article  CAS  Google Scholar 

  • Wang H, Cui L-F, Yang Y, Sanchez Casalongue H, Robinson JT, Liang Y, Cui Y, Dai H (2010b) Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132(40):13978–13980. doi:10.1021/ja105296a

    Article  CAS  Google Scholar 

  • Wang X, Cao X, Bourgeois L, Guan H, Chen S, Zhong Y, Tang D-M, Li H, Zhai T, Li L, Bando Y, Golberg D (2012a) N-doped graphene–SnO2 sandwich paper for high-performance lithium-Ion batteries. Adv Funct Mater 22(13):2682–2690. doi:10.1002/adfm.201103110

    Article  CAS  Google Scholar 

  • Wang H, Maiyalagan T, Wang X (2012b) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2(5):781–794. doi:10.1021/cs200652y

    Article  CAS  Google Scholar 

  • Wu Z-S, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng H-M (2011a) Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 4(6):3187–3194. doi:10.1021/nn100740x

    Article  Google Scholar 

  • Wu Z-S, Ren W, Xu L, Li F, Cheng H-M (2011b) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5(7):5463–5471. doi:10.1021/nn2006249

    Article  CAS  Google Scholar 

  • Yang S, Feng X, Müllen K (2011) Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv Mater 23(31):3575–3579. doi:10.1002/adma.201101599

    Article  CAS  Google Scholar 

  • Zhang K, Han P, Gu L, Zhang L, Liu Z, Kong Q, Zhang C, Dong S, Zhang Z, Yao J, Xu H, Cui G, Chen L (2012a) Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl Mater Interfaces 4(2):658–664. doi:10.1021/am201173z

    Article  CAS  Google Scholar 

  • Zhang X, Suresh Kumar P, Aravindan V, Liu HH, Sundaramurthy J, Mhaisalkar SG, Duong HM, Ramakrishna S, Madhavi S (2012b) Electrospun TiO2–graphene composite nanofibers as a highly durable insertion anode for lithium ion batteries. J Phys Chem C 116(28):14780–14788. doi:10.1021/jp302574g

    Article  CAS  Google Scholar 

  • Zhou G, Wang D-W, Yin L-C, Li N, Li F, Cheng H-M (2012) Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 6(4):3214–3223. doi:10.1021/nn300098m

    Article  CAS  Google Scholar 

  • Zhu N, Liu W, Xue M, Xie Z, Zhao D, Zhang M, Chen J, Cao T (2010) Graphene as a conductive additive to enhance the high-rate capabilities of electrospun Li4Ti5O12 for lithium-ion batteries. Electrochim Acta 55(20):5813–5818. doi:10.1016/j.electacta.2010.05.029

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by an Australian Research Council (ARC) Linkage project (Grant number LP0991012). The authors would like to thank Dr. Tania Silver for critical reading of the study and the valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaiping Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1538 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, D., Shi, D., Liu, Z. et al. TiO2 nanoparticles on nitrogen-doped graphene as anode material for lithium ion batteries. J Nanopart Res 15, 1674 (2013). https://doi.org/10.1007/s11051-013-1674-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1674-6

Keywords

Navigation