Skip to main content
Log in

Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report the uptake by wheat, lupin and Arabidopsis of mesoporous silica nanoparticles functionalised with amine cross-linked fluorescein isothiocyanate (MSN-APTES-FITC). The preparation of these particles at room temperature enabled the synthesis of 20 nm particles that contained a network of interconnected pores around 2 nm in diameter. The uptake and distribution of these nanoparticles were examined during seed germination, in roots of plants grown in a hydroponic system and in whole leaves and roots of plants via vacuum infiltration. The nanoparticles did not affect seed germination in lupin and there was no phytotoxicity. Following germination of wheat and lupin grown in a nutrient solution containing nanoparticles, they were found within cells and cell walls of the emerging root and in the vascular transport elements, the xylem, and in other associated cells. In leaves and roots of Arabidopsis the nanoparticles were found, following vacuum infiltration of whole seedlings, to be taken up by the entire leaf and they were principally found in the intercellular spaces of the mesophyll but also throughout much of the root system. We propose that MSNs could be used as a novel delivery system for small molecules in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MSN:

Mesoporous silica nanoparticle

MSN-APTES:

MSN-aminopropyl triethoxysilane

MSN-APTES-FITC:

MSN-APTES-fluorescein isothiocyanate

References

  • Abarrategi A, Gutiérrez MC, Moreno-Vicente C, Hortigüela MJ, Ramos V, López-Lacomba JL, Ferrer ML, del Monte F (2008) Multiwall carbon nanotube scaffolds for tissue engineering purposes. Biomaterials 29(1):94–102

    Article  CAS  Google Scholar 

  • Adani F, Papa G, Schievano A, Cardinale G, D’Imporzano G, Tambone F (2010) Nanoscale structure of the cell wall protecting cellulose from enzyme attack. Environ Sci Technol 45(3):1107–1113

    Article  Google Scholar 

  • Alexiou C, Jurgons R, Schmid R, Hilpert A, Bergemann C, Parak F, Iro H (2005) In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. J Magn Magn Mater 293(1):389–393

    Article  CAS  Google Scholar 

  • Belanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology 93(4):402–412

    Article  CAS  Google Scholar 

  • Campbell JL, Arora J, Cowell SF, Garg A, Eu P, Bhargava SK, Bansal V (2011) Quasi-cubic magnetite/silica core–shell nanoparticles as enhanced MRI contrast agents for cancer imaging. PLoS ONE 6(7):e21857

    Article  CAS  Google Scholar 

  • Carpita N, Sabularse D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205(4411):1144–1147

    Article  CAS  Google Scholar 

  • Chamel A, Pineri M, Escoubes M (1991) Quantitative determination of water sorption by plant cuticles. Plant, Cell Environ 14(1):87–95

    Article  Google Scholar 

  • Chen J, Wang W, Xu Y, Zhang X (2011) Slow-release formulation of a new biological pesticide, pyoluteorin, with mesoporous silica. J Agric Food Chem 59(1):307–311

    Article  CAS  Google Scholar 

  • Cherif M, Asselin A, Belanger RR (1994) Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 84(3):236–242

    Article  CAS  Google Scholar 

  • Chiang Y-D, Lian H-Y, Leo S-Y, Wang S-G, Yamauchi Y, Wu KCW (2011) Controlling particle size and structural properties of mesoporous silica nanoparticles using the Taguchi method. J Phys Chem C 115(27):13158–13165

    Article  CAS  Google Scholar 

  • Cifuentes Z, Custardoy L, de la Fuente J, Marquina C, Ibarra MR, Rubiales D, Perez-de-Luque A (2010) Absorption and translocation to the aerial part of magnetic carbon-coated nanoparticles through the root of different crop plants. J Nanobiotechnol 8(1):26

    Article  Google Scholar 

  • Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiol Plant 134(1):151–160

    Article  CAS  Google Scholar 

  • Fawe A, Abou-Zaid M, Menzies JG, Belanger RR (1998) Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology 88(5):396–401

    Article  CAS  Google Scholar 

  • Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121(3):829–838

    Article  CAS  Google Scholar 

  • Gunning T, Cahill DM (2009) A soil-free plant growth system to facilitate analysis of plant pathogen interactions in roots. J Phytopathol 157(7–8):497–501

    Article  Google Scholar 

  • He Q, Cui X, Cui F, Guo L, Shi J (2009) Size-controlled synthesis of monodispersed mesoporous silica nano-spheres under a neutral condition. Microporous Mesoporous Mater 117(3):609–616

    Article  CAS  Google Scholar 

  • Jamet E, Boudart G, Borderies G, Charmont S, Lafitte C, Rossignol M, Canut H, Pont-Lezica R (2008) Isolation of plant cell wall proteins. In: Posch A (ed) 2D PAGE: sample preparation and fractionation. Humana Press, New York, pp 187–201

    Chapter  Google Scholar 

  • Jang HR, Oh H-J, Kim J-H, Jung KY (2013) Synthesis of mesoporous spherical silica via spray pyrolysis: pore size control and evaluation of performance in paclitaxel pre-purification. Microporous Mesoporous Mater 165:219–227

    Article  CAS  Google Scholar 

  • Kauss H, Seehaus K, Franke R, Gilbert S, Dietrich RA, Kroger N (2003) Silica deposition by a strongly cationic proline-rich protein from systemically resistant cucumber plants. Plant J 33(1):87–95

    Article  CAS  Google Scholar 

  • Kordon HA (1992) Seed viability and germination: a multi-purpose experimental system. J Biol Educ 26(4):247–251

    Article  Google Scholar 

  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA (2010) Uptake and distribution of ultrasmall anatase TiO2 Alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10(7):2296–2302

    Article  CAS  Google Scholar 

  • Larue C, Pinault M, Czarny B, Georgin D, Jaillard D, Bendiab N, Mayne-L’Hermite M, Taran F, Dive V, Carrière M (2012) Quantitative evaluation of multi-walled carbon nanotube uptake in wheat and rapeseed. J Hazard Mater 227–228:155–163

    Article  Google Scholar 

  • Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86(5):491–499

    Article  CAS  Google Scholar 

  • Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147(2):422–428

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42(15):5580–5585

    Article  CAS  Google Scholar 

  • Lin S, Reppert J, Hu Q, Hudson JS, Reid ML, Ratnikova TA, Rao AM, Luo H, Ke PC (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132

    CAS  Google Scholar 

  • Liu C, Wang X, Lee S, Pfefferle LD, Haller GL (2012) Surfactant chain length effect on the hexagonal-to-cubic phase transition in mesoporous silica synthesis. Microporous Mesoporous Mater 147(1):242–251

    Article  Google Scholar 

  • Ma K, Sai H, Wiesner U (2012) Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles. J Am Chem Soc 134(32):13180–13183

    Article  CAS  Google Scholar 

  • Martin-Ortigosa S, Valenstein JS, Lin VSY, Trewyn BG, Wang K (2012) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22(17):3576–3582

    Article  CAS  Google Scholar 

  • Meyer DE, Curran MA, Gonzalez MA (2009) An examination of existing data for the industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts. Environ Sci Technol 43(5):1256–1263

    Article  CAS  Google Scholar 

  • Nair R, Poulose A, Nagaoka Y, Yoshida Y, Maekawa T, Kumar D (2011) Uptake of FITC labeled silica nanoparticles and quantum dots by rice seedlings: effects on seed germination and their potential as biolabels for plants. J Fluoresc 21(6):2057–2068

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann N, Filser J, Miao A-J, Quigg A, Santschi P, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17(5):372–386

    Article  CAS  Google Scholar 

  • Navarro DA, Bisson MA, Aga DS (2012) Investigating uptake of water-dispersible CdSe/ZnS quantum dot nanoparticles by Arabidopsis thaliana plants. J Hazard Mater 211–212:427–435

    Article  Google Scholar 

  • Nooney RI, Thirunavukkarasu D, Chen Y, Josephs R, Ostafin AE (2002) Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem Mater 14(11):4721–4728

    Article  CAS  Google Scholar 

  • Pan L, He Q, Liu J, Chen Y, Ma M, Zhang L, Shi J (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134(13):5722–5725

    Article  CAS  Google Scholar 

  • Pereira C, Biernacki K, Rebelo SLH, Magalhães AL, Carvalho AP, Pires J, Freire C (2009) Designing heterogeneous oxovanadium and copper acetylacetonate catalysts: Effect of covalent immobilisation in epoxidation and aziridination reactions. J Mol Catal A 312:53–64

    Article  CAS  Google Scholar 

  • Pereira C, Pereira AM, Quaresma P, Tavares PB, Pereira E, Araujo JP, Freire C (2010) Superparamagnetic gamma-Fe2O3@SiO2 nanoparticles: a novel support for the immobilization of [VO(acac)2]. Dalton Trans 39(11):2842–2854

    Article  CAS  Google Scholar 

  • Pereira C, Alves C, Monteiro A, Magén C, Pereira AM, Ibarra A, Ibarra MR, Tavares PB, Araújo JP, Blanco G, Pintado JM, Carvalho AP, Pires J, Pereira MFR, Freire C (2011) Designing novel hybrid materials by one-pot co-condensation: from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles. ACS Appl Mater Interfaces 3(7):2289–2299

    Article  CAS  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498

    Article  CAS  Google Scholar 

  • Rodrigues FA, Benhamou N, Datnoff LE, Jones JB, Belanger RR (2003) Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 93(5):535–546

    Article  CAS  Google Scholar 

  • Rondeau-Mouro C, Defer D, Leboeuf E, Lahaye M (2008) Assessment of cell wall porosity in Arabidopsis thaliana by NMR spectroscopy. Int J Biol Macromol 42(2):83–92

    Article  CAS  Google Scholar 

  • Sabo-Attwood T, Unrine JM, Stone JW, Murphy CJ, Ghoshroy S, Blom D, Bertsch PM, Newman LA (2012) Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6(4):353–360

    Article  CAS  Google Scholar 

  • Schönherr J, Luber M (2001) Cuticular penetration of potassium salts: effects of humidity, anions, and temperature. Plant Soil 236(1):117–122

    Article  Google Scholar 

  • Shi Y-T, Cheng H-Y, Geng Y, Nan H-M, Chen W, Cai Q, Chen B-H, Sun X-D, Yao Y-W, Li H-D (2010) The size-controllable synthesis of nanometer-sized mesoporous silica in extremely dilute surfactant solution. Mater Chem Phys 120(1):193–198

    Article  CAS  Google Scholar 

  • Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619

    Article  CAS  Google Scholar 

  • Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46(18):10247–10254

    CAS  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43(24):9473–9479

    Article  CAS  Google Scholar 

  • Tepfer M, Taylor IE (1981) The permeability of plant cell walls as measured by gel filtration chromatography. Science 213(4509):761–763

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295–300

    Article  CAS  Google Scholar 

  • Wang S (2009) Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater 117(1–2):1–9

    CAS  Google Scholar 

  • Wang L, Roitberg A, Meuse C, Gaigalas AK (2001) Raman and FTIR spectroscopies of fluorescein in solutions. Spectrochim Acta A Mol Biomol Spectrosc 57(9):1781–1791

    Article  CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46(8):4434–4441

    Article  CAS  Google Scholar 

  • Wanyika H, Gatebe E, Kioni P, Tang Z, Gao Y (2012) Mesoporous silica nanoparticles carrier for urea: potential applications in agrochemical delivery systems. J Nanosci Nanotechnol 12(3):2221–2228

    Article  CAS  Google Scholar 

  • Wen LX, Li ZZ, Zou HK, Liu AQ, Chen JF (2005) Controlled release of avermectin from porous hollow silica nanoparticles. Pest Manag Sci 61(6):583–590

    Article  CAS  Google Scholar 

  • Xu H, Yan F, Monson EE, Kopelman R (2003) Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications. J Biomed Mater Res 66A(4):870–879

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10(6):713–717

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Centre for Chemistry and Biotechnology and the Institute for Frontier Materials, Deakin University. Zhifeng Yi was supported by a Deakin University postgraduate scholarship. We acknowledge Fabian Inturrissi for assistance with the germination aspects of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hashmath I. Hussain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2013_1676_MOESM1_ESM.pptx

Fig. S1 Further examples of MSN-APTES-FITC by wheat roots. a bright field image of control root treated with MSN, b autofluorescene from the cell wall treated with MSN c bright field image of wheat root germinated in the presence of MSN-APTES-FITC, d white arrows indicates aggregates of MSN-APTES-FITC accumulated inside the cell and autofluorescence from the cell wall is observed, e bright field image of wheat root germinated in the presence of MSN-APTES-FITC where white arrows indicate the accumulation of aggregated MSN-FITC and f Accumulation of fluorescing MSN-APTES-FITC aggregates indicated by white arrowheads. Scale bar af (50 μm) (PPTX 4702 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hussain, H.I., Yi, Z., Rookes, J.E. et al. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res 15, 1676 (2013). https://doi.org/10.1007/s11051-013-1676-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1676-4

Keywords

Navigation