Skip to main content

Advertisement

Log in

Facile synthesis and post-processing of eco-friendly, highly conductive copper zinc tin sulphide nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4 (CZTS) nanoparticles have shown promising properties to be used as an energy harvesting material. They are usually synthesised under inert atmosphere or vacuum, whereas the subsequent step of film formation is carried out under an atmosphere of sulphur and/or Sn in order to avoid the decomposition of CZTS nanoparticles into binary and ternary species as well as the formation of the corresponding oxides. In the present paper we show that both the synthesis of CZTS nanoparticles and the film formation from the corresponding suspension can be considerably simplified. Namely, the synthesis can be carried out without controlling the atmosphere, whereas during the film annealing a nitrogen atmosphere is sufficient to avoid the depletion of the CZTS kesterite phase. Furthermore, an integrated approach including in-depth Raman analysis is developed in order to deal with the challenges associated with the characterization of CZTS nanoparticles in comparison to bulk systems. The formation of competitive compounds during the synthesis such as binary and ternary sulphides as well as metal oxides nanoparticles is discussed in detail. Finally, the as-produced films have ten times higher conductivity than the state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allen J, Bard RP, Jordan J (1985) Standard potentials in aqueous solution. CRC Press, Boca Raton

    Google Scholar 

  • Cao M, Shen Y (2011) A mild solvothermal route to kesterite quaternary Cu2ZnSnS4 nanoparticles. J Cryst Growth 318(1):1117–1120. doi:10.1016/j.jcrysgro.2010.10.071

    Article  Google Scholar 

  • Chen M, Feng Y-G, Wang X, Li T-C, Zhang J-Y, Qian D-J (2007) Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23(10):5296–5304. doi:10.1021/la700553d

    Article  Google Scholar 

  • Cheng A-J, Manno M, Khare A, Leighton C, Campbell SA, Aydil ES (2011) Imaging and phase identification of Cu2ZnSnS4 thin films using confocal Raman spectroscopy. J Vac Sci Technol A 29(5):051203

    Article  Google Scholar 

  • Chesman ASR, van Embden J, Duffy NW, Webster NAS, Jasieniak JJ (2013) In situ formation of reactive sulfide precursors in the one-pot, multigram synthesis of Cu2ZnSnS4 nanocrystals. Cryst Growth Des 13(4):1712–1720. doi:10.1021/cg4000268

    Article  Google Scholar 

  • Cotton FAW, Wilkinson G (1962) Advance inorganic chemistry, 1st edn. Interscience Publishers, New York

    Google Scholar 

  • Delbos S (2012) Kësterite thin films for photovoltaics: a review. EPJ Photovolt 3:35004

    Article  Google Scholar 

  • Distaso M, Segets D, Wernet R, Taylor RK, Peukert W (2012) Tuning the size and the optical properties of ZnO mesocrystals synthesized under solvothermal conditions. Nanoscale 4(3):864–873

    Article  Google Scholar 

  • Dumcenco D, Huang Y-S (2013) The vibrational properties study of kesterite Cu2ZnSnS4 single crystals by using polarization dependent Raman spectroscopy. Opt Mater 35(3):419–425. doi:10.1016/j.optmat.2012.09.031

    Article  Google Scholar 

  • Ennaoui A, Lux-Steiner M, Weber A, Abou-Ras D, Kötschau I, Schock HW, Schurr R, Hölzing A, Jost S, Hock R, Voß T, Schulze J, Kirbs A (2009) Cu2ZnSnS4 thin film solar cells from electroplated precursors: novel low-cost perspective. Thin Solid Films 517(7):2511–2514. doi:10.1016/j.tsf.2008.11.061

    Article  Google Scholar 

  • Fernandes PA, Salomé PMP, da Cunha AF (2011) Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J Alloy Compd 509(28):7600–7606. doi:10.1016/j.jallcom.2011.04.097

    Article  Google Scholar 

  • Fontane X, Calvo-Barrio L, Izquierdo-Roca V, Saucedo E, Perez-Rodriguez A, Morante JR, Berg DM, Dale PJ, Siebentritt S (2011) In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications. Appl Phys Lett 98(18):181903–181905

    Article  Google Scholar 

  • Gerischer H, Sorg N (1992) Chemical dissolution of zinc oxide crystals in aqueous electrolytes—an analysis of the kinetics. Electrochim Acta 37(5):827–835. doi:10.1016/0013-4686(92)85035-j

    Article  Google Scholar 

  • Grossberg M, Krustok J, Raudoja J, Timmo K, Altosaar M, Raadik T (2011) Photoluminescence and Raman study of Cu2ZnSnS4 monograins for photovoltaic applications. Thin Solid Films 519(21):7403–7406. doi:10.1016/j.tsf.2010.12.099

    Article  Google Scholar 

  • Grossberg M, Krustok J, Raudoja J, Raadik T (2012) The role of structural properties on deep defect states in Cu2ZnSnS4 studied by photoluminescence spectroscopy. Appl Phys Lett 101(10):102102–102104

    Article  Google Scholar 

  • Guo Q, Hillhouse HW, Agrawal R (2009) Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc 131(33):11672–11673. doi:10.1021/ja904981r

    Article  Google Scholar 

  • Habas SE, Platt HAS, van Hest MFAM, Ginley DS (2010) Low-cost inorganic solar cells: from ink to printed device. Chem Rev 110(11):6571–6594. doi:10.1021/cr100191d

    Article  Google Scholar 

  • Hahn RB, Sanders CH, Gutnikov G (1960) Separation of Mn and Zn from Co and Ni by fractional dissolution of their sulfides. J Chem Educ 37(8):412. doi:10.1021/ed037p412

    Article  Google Scholar 

  • Hlaing Oo WM, Johnson JL, Bhatia A, Lund EA, Nowell MM, Scarpulla MA (2011) Grain size and texture of Cu2ZnSnS4 thin films synthesized by cosputtering binary sulfides and annealing: effects of processing conditions and sodium. J Electron Mater 40(11):2214–2221. doi:10.1007/s11664-011-1729-3

    Article  Google Scholar 

  • Hsu NE, Hung WK, Chen YF (2004) Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods. J Appl Phys 96(8):4671–4673

    Article  Google Scholar 

  • Hsu W-C, Bob B, Yang W, Chung C-H, Yang Y (2012) Reaction pathways for the formation of Cu2ZnSn(Se, S)4 absorber materials from liquid-phase hydrazine-based precursor inks. Energy Environ Sci 5(9):8564–8571

    Article  Google Scholar 

  • Jiang H, Dai P, Feng Z, Fan W, Zhan J (2012) Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4. J Mater Chem 22(15):7502–7506

    Article  Google Scholar 

  • Kameyama T, Osaki T, Okazaki K-I, Shibayama T, Kudo A, Kuwabata S, Torimoto T (2010) Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films. J Mater Chem 20(25):5319–5324

    Article  Google Scholar 

  • Katsikini M, Papagelis K, Paloura EC, Ves S (2003) Raman study of Mg, Si, O, and N implanted GaN. J Appl Phys 94(7):4389–4394

    Article  Google Scholar 

  • Khare A, Wills AW, Ammerman LM, Norris DJ, Aydil ES (2011) Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chem Commun 47(42):11721–11723

    Article  Google Scholar 

  • Khare A, Himmetoglu B, Johnson M, Norris DJ, Cococcioni M, Aydil ES (2012) Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments. J Appl Phys 111(8):083707–083709

    Article  Google Scholar 

  • Kosyak V, Karmarkar MA, Scarpulla MA (2012) Temperature dependent conductivity of polycrystalline Cu2ZnSnS4 thin films. Appl Phys Lett 100(26):263903

    Article  Google Scholar 

  • Kravets V (2007) Photoluminescence and Raman spectra of SnO; nanostructures doped with Sm ions. Opt Spectrosc 103(5):766–771. doi:10.1134/s0030400x07110148

    Article  Google Scholar 

  • Kumar RS, Ryu BD, Chandramohan S, Seol JK, Lee S-K, Hong C-H (2012) Rapid synthesis of sphere-like Cu2ZnSnS4 microparticles by microwave irradiation. Mater Lett 86:174–177. doi:10.1016/j.matlet.2012.07.059

    Article  Google Scholar 

  • Liu Y, Dong Y, Wang G (2003) Far-infrared absorption spectra and properties of SnO2 nanorods. Appl Phys Lett 82(2):260–262

    Article  Google Scholar 

  • Liu Z, Reed D, Kwon G, Shamsuzzoha M, Nikles DE (2007) Pt3Sn nanoparticles with controlled size: high-temperature synthesis and room-temperature catalytic activation for electrochemical methanol oxidation. J Phys Chem C 111(38):14223–14229. doi:10.1021/jp0739263

    Article  Google Scholar 

  • Lu X, Zhuang Z, Peng Q, Li Y (2011) Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor. Chem Commun 47(11):3141–3143

    Article  Google Scholar 

  • Maeda T, Nakamura S, Wada T (2011) First-principles calculations of vacancy formation in in-free photovoltaic semiconductor Cu2ZnSnSe4. Thin Solid Films 519(21):7513–7516. doi:10.1016/j.tsf.2011.01.094

    Article  Google Scholar 

  • Mitzi DB, Gunawan O, Todorov TK, Wang K, Guha S (2011) The path towards a high-performance solution-processed kesterite solar cell. Sol Energy Mater Sol Cells 95(6):1421–1436. doi:10.1016/j.solmat.2010.11.028

    Article  Google Scholar 

  • Ness JND, Van-Huong T, Weller H (2012) Sustainable synthesis of semiconductor nanoparticles in a continuous flow reactor. MRS Proc 1386:mrsf11-1386-d07-02. doi:10.1557/opl.2012.5

  • Nicholls D (1975) Complexes and first-row transition elements. American Elsevier, New York

    Google Scholar 

  • Patel M, Mukhopadhyay I, Ray A (2012) Structural, optical and electrical properties of spray-deposited CZTS thin films under a non-equilibrium growth condition. J Phys D Appl Phys 45(44):445103

    Article  Google Scholar 

  • Ramasamy K, Malik MA, O’Brien P (2012) Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. Chem Commun 48(46):5703–5714

    Article  Google Scholar 

  • Rath T, Haas W, Pein A, Saf R, Maier E, Kunert B, Hofer F, Resel R, Trimmel G (2012) Synthesis and characterization of copper zinc tin chalcogenide nanoparticles: influence of reactants on the chemical composition. Solar Energy Mater Solar Cells 101:87–94. doi:10.1016/j.solmat.2012.02.025

    Article  Google Scholar 

  • Regulacio MD, Ye C, Lim SH, Bosman M, Ye E, Chen S, Xu Q-H, Han M-Y (2012) Colloidal nanocrystals of wurtzite-type Cu2ZnSnS4: facile noninjection synthesis and formation mechanism. Chemistry 18(11):3127–3131. doi:10.1002/chem.201103635

    Article  Google Scholar 

  • Riha SC, Parkinson BA, Prieto AL (2009) Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J Am Chem Soc 131(34):12054–12055. doi:10.1021/ja9044168

    Article  Google Scholar 

  • Romero MJ, Du H, Teeter G, Yan Y, Al-Jassim MM (2011) Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In, Ga)Se2 thin films used in photovoltaic applications. Phys Rev B 84(16):165324

    Article  Google Scholar 

  • Rooney PC, Daniels DD (1998) Oxygen solubility in various alkanolamine/water mixtures. Petrol Technol Q 3(1):97

    Google Scholar 

  • Salavati-Niasari M, Fereshteh Z, Davar F (2009) Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron 28(1):126–130. doi:10.1016/j.poly.2008.09.027

    Article  Google Scholar 

  • Sarswat PK, Free ML, Tiwari A (2011) Temperature-dependent study of the Raman A mode of Cu2ZnSnS4 thin films. Phys Status Solidif B 248(9):2170–2174. doi:10.1002/pssb.201046477

    Google Scholar 

  • Singh A, Geaney H, Laffir F, Ryan KM (2012) Colloidal synthesis of wurtzite Cu2ZnSnS4 nanorods and their perpendicular assembly. J Am Chem Soc 134(6):2910–2913. doi:10.1021/ja2112146

    Article  Google Scholar 

  • Sottery TW (1985) Chemical principles, 6th edn (Masterton WL, Slowinski EJ, Stanitski CL). J Chem Educ 62(12):A325. doi:10.1021/ed062pA325

    Article  Google Scholar 

  • Su Z, Yan C, Sun K, Han Z, Liu F, Liu J, Lai Y, Li J, Liu Y (2012a) Preparation of Cu2ZnSnS4 thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method. Appl Surf Sci 258(19):7678–7682. doi:10.1016/j.apsusc.2012.04.120

    Article  Google Scholar 

  • Su Z, Yan C, Tang D, Sun K, Han Z, Liu F, Lai Y, Li J, Liu Y (2012b) Fabrication of Cu2ZnSnS4 nanowires and nanotubes based on AAO templates. CrystEngComm 14(3):782–785

    Article  Google Scholar 

  • Tian Q, Xu X, Han L, Tang M, Zou R, Chen Z, Yu M, Yang J, Hu J (2012) Hydrophilic Cu2ZnSnS4 nanocrystals for printing flexible, low-cost and environmentally friendly solar cells. CrystEngComm 14(11):3847–3850

    Article  Google Scholar 

  • Todorov TK, Reuter KB, Mitzi DB (2010) High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater 22(20):E156–E159. doi:10.1002/adma.200904155

    Article  Google Scholar 

  • Todorov TK, Tang J, Bag S, Gunawan O, Gokmen T, Zhu Y, Mitzi DB (2012) Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S, Se)4 solar cells. Adv Energy Mater 3(1):34–38. doi:10.1002/aenm.201200348

    Article  Google Scholar 

  • Walsh A, Chen S, Gong XG, Wei S-H (2011) Crystal structure and defect reactions in the kesterite solar cell absorber Cu2ZnSnS4 (CZTS): theoretical insights. AIP Conf Proc 1399(1):63–64

    Article  Google Scholar 

  • Wang H (2011) Progress in thin film solar cells based on Cu2ZnSnS4. Int J Photoenergy. doi:10.1155/2011/801292

  • Wang C, Cheng C, Cao Y, Fang W, Zhao L, Xu X (2011) Synthesis of Cu2ZnSnS4 nanocrystallines by a hydrothermal route. Jpn J Appl Phys 50:065003 (Copyright (C) 2011 The Japan Society of Applied Physics)

    Google Scholar 

  • Wei M, Du Q, Wang D, Liu W, Jiang G, Zhu C (2012) Synthesis of spindle-like kesterite Cu2ZnSnS4 nanoparticles using thiourea as sulfur source. Mater Lett 79:177–179. doi:10.1016/j.matlet.2012.03.080

    Article  Google Scholar 

  • Winterton J, Myers D, Lippmann J, Pisano A, Doyle F (2008) A novel continuous microfluidic reactor design for the controlled production of high-quality semiconductor nanocrystals. J Nanopart Res 10(6):893–905. doi:10.1007/s11051-007-9345-0

    Article  Google Scholar 

  • Woo K, Kim Y, Moon J (2012) A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy Environ Sci 5(1):5340–5345

    Article  Google Scholar 

  • Xin X, He M, Han W, Jung J, Lin Z (2011) Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells. Angew Chem Int Ed 50(49):11739–11742. doi:10.1002/anie.201104786

    Article  Google Scholar 

  • Xu CY, Zhang PX, Yan L (2001) Blue shift of Raman peak from coated TiO2 nanoparticles. J Raman Spectrosc 32(10):862–865. doi:10.1002/jrs.773

    Article  Google Scholar 

  • Xu Z, Shen C, Hou Y, Gao H, Sun S (2009) Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem Mater 21(9):1778–1780. doi:10.1021/cm802978z

    Article  Google Scholar 

  • Xu J, Yang X, Yang Q-D, Wong T-L, Lee C-S (2012) Cu2ZnSnS4 hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells. J Phys Chem C 116(37):19718–19723. doi:10.1021/jp306628m

    Article  Google Scholar 

  • Yang H, Jauregui LA, Zhang G, Chen YP, Wu Y (2012a) Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting. Nano Lett 12(2):540–545. doi:10.1021/nl201718z

    Article  Google Scholar 

  • Yang X, Xu J, Xi L, Yao Y, Yang Q, Chung CY, Lee C-S (2012b) Microwave-assisted synthesis of Cu2ZnSnS4 nanocrystals as a novel anode material for lithium ion battery. J Nanopart Res 14(6):1–6. doi:10.1007/s11051-012-0931-4

    Article  Google Scholar 

  • Zaberca O, Oftinger F, Chane-Ching JY, Datas L, Lafond A, Puech P, Balocchi A, Lagarde D, Marie X (2012) Surfactant-free CZTS nanoparticles as building blocks for low-cost solar cell absorbers. Nanotechnology 23(18):185402

    Article  Google Scholar 

  • Zhang Y, Yoshihara YA (2012) Synthesis of Cu2ZnSn(S, Se)4 nanoparticles for application in low-cost solar cells. Appl Phys Express 5:012301 (Copyright (c) 2012 The Japan Society of Applied Physics)

    Article  Google Scholar 

  • Zhou W-H, Zhou Y-L, Feng J, Zhang J-W, Wu S-X, Guo X-C, Cao X (2012) Solvothermal synthesis of flower-like Cu2ZnSnS4 nanostructures and their application as anode materials for lithium-ion batteries. Chem Phys Lett 546:115–119. doi:10.1016/j.cplett.2012.07.060

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge BAYER Technology Services for financial support. This work was supported by the Deutsche Forschungsgemeinschaft through the Cluster of Excellence ‘Engineering of Advanced Material’ initiative at the ‘Friedrich Alexander University of Erlangen-Nuremberg’. The authors acknowledge Dr. Nicola Taccardi at the Institute of Chemical Reaction Technology for the ICP-OES measurements and fruitful discussion. Furthermore, Dr. B. Braunschweig and Mr. T. Nacken are acknowledged for helpful discussion on Raman analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Peukert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 9827 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmad, R., Distaso, M., Azimi, H. et al. Facile synthesis and post-processing of eco-friendly, highly conductive copper zinc tin sulphide nanoparticles. J Nanopart Res 15, 1886 (2013). https://doi.org/10.1007/s11051-013-1886-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1886-9

Keywords

Navigation