Skip to main content
Log in

RETRACTED ARTICLE: Cu2ZnSnSe4 quantum dots with controllable size and quantum confinement effect

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

This article was retracted on 01 December 2013

Abstract

Cu2ZnSnSe4 quantum dots (QDs) with controllable sizes have been synthesized via a hot-injection method. The diameters of the QDs range from 3.2 to 10.1 nm with the tunable band gap from 1.27 to 1.54 eV by adjusting the reaction temperatures from 180 to 240 °C. Structural and Raman scattering data confirm that Cu2ZnSnSe4 is obtained without other secondary phases. The band gaps of the QDs with diameters less than 4.6 nm show an obvious blue shift to higher energy due to quantum confinement effect. It indicates that the Cu2ZnSnSe4 QDs can be a potential candidate for quantum-dot-sensitized solar cells in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Altosaar M, Raudoja J, Timmo K, Danilson M, Grossberg M, Krustok J, Mellikov E (2008) Cu2Zn1–xCdx Sn(Se1−ySy)4 solid solutions as absorber materials for solar cells. Physica Status Solidi (a) 205:167–170

    Article  Google Scholar 

  • Bang JH, Kamat PV (2011) CdSe quantum dot–fullerene hybrid nanocomposite for solar energy conversion: electron transfer and photoelectrochemistry. ACS Nano 5:9421–9427

    Article  Google Scholar 

  • Cao YB, Xiao YJ, Jung JY, Um HD, Jee SW, Choi HM, Bang JH, Lee JH (2013) Highly electrocatalytic Cu2ZnSn(S1−xSex)4 counter electrodes for quantum-dot-sensitized solar cells. ACS Appl Mater Interfaces 5:479–484

    Article  Google Scholar 

  • Debnath R, Tang J, Barkhouse DA, Wang XH, Pattantyus-Abraham AG, Brzozowski L, Levina L, Sargent EH (2010) Ambient-processed colloidal quantum dot solar cells via individual pre-encapsulation of nanoparticles. J Am Chem Soc 132:5952–5953

    Article  Google Scholar 

  • Diguna LJ, Shen Q, Kobayashi J, Toyoda T (2007) High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells. Appl Phys Lett 91:023116

    Article  Google Scholar 

  • Franzl T, Klar TA, Schietinger S, Rogach AL, Feldmann J (2004) Exciton recycling in graded gap nanocrystal structures. Nano Lett 4:1599–1603

    Article  Google Scholar 

  • Grossberg M, Krustok J, Timmo K, Altosaar M (2009) Radiative recombination in Cu2ZnSnSe4 monograins studied by photoluminescence spectroscopy. Thin Solid Films 517:2489–2492

    Article  Google Scholar 

  • Guo Q, Ford GM, Yang WC, Walker BC, Stach EA, Hillhouse HW, Agrawal R (2010) Fabrication of 7.2 % efficient CZTSSe solar cells using CZTS nanocrystals. J Am Chem Soc 132:17384–17386

    Article  Google Scholar 

  • Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753

    Article  Google Scholar 

  • Kamat PV (2012) Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Acc Chem Res 45:1906–1915

    Article  Google Scholar 

  • Khare A, Wills AW, Ammerman LM, Norrisz DJ, Aydil ES (2011) Size control and quantum confinement in Cu2ZnSnS4 nanocrystals. Chem Commun 47:11721–11723

    Article  Google Scholar 

  • Lee YL, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on Co-sensitization of CdS/CdSe. Adv Funct Mater 19:604–609

    Article  Google Scholar 

  • Lee HJ, Chen P, Moon SJ, Sauvage F, Sivula K, Bessho T, Gamelin DR, Comte P, Zakeeruddin SM, Seok SI, Grätzel M, Nazeeruddin MK (2009a) Regenerative PbS and CdS quantum dot sensitized solar cells with a cobalt complex as hole mediator. Langmuir 25:7602–7608

    Article  Google Scholar 

  • Lee HJ, Wang M, Chen P, Gamelin DR, Zakeeruddin SM, Grätzel M, Nazeeruddin MK (2009b) Efficient CdSe Quantum dot-sensitized solar cells prepared by an improved successive ionic layer adsorption and reaction process. Nano Lett 9:4221–4227

    Article  Google Scholar 

  • Liu WC, Guo BL, Wu XS, Zhang FM, Mak CL, Wong KH (2013) Facile hydrothermal synthesis of hydrotropic Cu2ZnSnS4 nanocrystal quantum dots: band-gap engineering and phonon confinement effect. J Mater Chem A 1:3182–3186

    Article  Google Scholar 

  • Luther JM, Gao JB, Lloyd MT, Semonin OE, Beard MC, Nozik AJ (2010) Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Adv Mater 22:3704–3707

    Article  Google Scholar 

  • Nozik AJ (2005) Exciton multiplication and relaxation dynamics in quantum dots: applications to ultrahigh-efficiency solar photon conversion. Inorg Chem 44:6893–6899

    Article  Google Scholar 

  • Pedro VG, Xu XQ, Seró IM, Bisquert J (2010) Modeling high-efficiency quantum dot sensitized solar cells. ACS Nano 4:5783–5790

    Article  Google Scholar 

  • Persson C (2011) Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J Appl Phys 107:053710

    Article  Google Scholar 

  • Riha SC, Parkinson BA, Prieto AL (2009) Solution-based synthesis and characterization of Cu2ZnSnS4 nanocrystals. J Am Chem Soc 131:12054–12055

    Article  Google Scholar 

  • Riha SC, Fredrick SJ, Sambur JB, Liu Y, Prieto AL, Parkinson BA (2011) Photoelectrochemical characterization of nanocrystalline thin-film Cu2ZnSnS4 photocathodes. ACS Appl Mater Interfaces 3:58–66

    Article  Google Scholar 

  • Steinhagen C, Panthani MG, Akhavan V, Goodfellow B, Koo B, Korgel BA (2009) Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J Am Chem Soc 131:12554–12555

    Article  Google Scholar 

  • Tisdale WA, Williams KJ, Timp BA, Norris DJ, Aydil ES, Zhu XY (2010) Hot-electron transfer from semiconductor nanocrystals. Science 328:1543–1547

    Article  Google Scholar 

  • Todorov TK, Reuter KB, Mitzi DB (2010) High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater 22:E156–E159

    Article  Google Scholar 

  • Xu CY, Zhang PX, Yan L (2001) Blue shift of Raman peak from coated TiO2 nanoparticles. J Raman Spectrosc 32:862–865

    Article  Google Scholar 

  • Xu J, Yang X, Yang QD, Wong TL, Lee CS (2012) Cu2ZnSnS4 hierarchical microspheres as an effective counter electrode material for quantum dot sensitized solar cells. J Phys Chem C 116:19718–19723

    Article  Google Scholar 

  • Yin Y, Alivisatos AP (2005) Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437:664–670

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Natural Science Foundation of Beijing (No. 2122005), Tianjin City Application Foundation and Advanced Technology Research Program (12JCZDJC21700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang.

Additional information

This article has been retracted at the request of the authors. The reason for this request is that the UV-vis absorption results shown in Figure 4 have been fabricated. The authors present their apologies to the readers and editors.

About this article

Cite this article

Zong, K., Lu, S., Wang, H. et al. RETRACTED ARTICLE: Cu2ZnSnSe4 quantum dots with controllable size and quantum confinement effect. J Nanopart Res 15, 1947 (2013). https://doi.org/10.1007/s11051-013-1947-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-1947-0

Keywords

Navigation