Skip to main content
Log in

Synthesis of SiO2@NiO magnetic core–shell nanoparticles and their use as adsorbents for the removal of methylene blue

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

SiO2@NiO core–shell nanoparticles with variable NiO shell thickness have been prepared via homogeneous precipitation. The as prepared and calcined core–shell nanoparticles have been characterized using powder X-ray diffraction, thermal gravimetric analysis, FT-IR spectroscopy, scanning electron microscopy, transmission electron microscopy, and surface area measurements. The shell thickness and the particle size of NiO in the core–shell nanoparticles have been controlled using different concentrations of the nickel salt. The NiO shell thickness, as observed by the TEM, varies from about 46 to 144 nm. The SiO2@NiO core–shell nanoparticles show higher remanent magnetization, saturation magnetization, and lower coercivity compared to pure NiO nanoparticles. The SiO2@NiO core–shell nanoparticles have been tested as adsorbents for the removal of methylene blue from an aqueous solution and the core–shell nanoparticles possess good adsorption efficiency for the cationic dye compared to pure NiO and SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Acosta-Silva YJ, Nava R, Hernandez-Morales V, Macias-Sanchez SA, Gomez-Herrera ML, Pawelec B (2011) Methylene blue photodegradation over titania-decorated SBA-15. Appl Catal B 110:108–117. doi:10.1016/j.apcatb.2011.08.032

    Article  CAS  Google Scholar 

  • Bai G, Dai H, Deng J, Liu Y, Ji K (2012) Porous NiO nanoflowers and nanourchins: highly active catalysts for toluene combustion. Catal Commun 27:148–153. doi:10.1016/j.catcom.2012.07.008

    Article  CAS  Google Scholar 

  • Bayal N, Jeevanandam P (2012) Synthesis of CuO@NiO nanoparticles by homogeneous precipitation method. J Alloys Compd 537:232–241. doi:10.1016/j.jallcom.2012.05.086

    Article  CAS  Google Scholar 

  • Bogush GH, Tracy MA, Zukoski CF (1988) Preparation of monodisperse silica particles: control of size and mass fraction. J Noncryst Solids 104:95–106. doi:10.1016/0022-3093(88)90187-1

    Article  CAS  Google Scholar 

  • Brown MD, Suteewong T, Kumar RSS, D’Innocenzo V, Petrozza A, Lee MM, Wiesner U, Snaith HJ (2011) Plasmonic dye-sensitized solar cells using core–shell metal–insulator nanoparticles. Nano Lett 11:438–445. doi:10.1021/nl1031106

    Article  CAS  Google Scholar 

  • Buso D, Guglielmi M, Martucci A, Cantalini C, Post ML, Hache A (2006a) Porous sol gel silica films doped with crystalline NiO nanoparticles for gas sensing applications. J Solgel Sci Technol 40:299–308. doi:10.1007/s10971-006-8958-6

    Article  CAS  Google Scholar 

  • Buso D, Guglielmi M, Martucci A, Mattei G, Mazzoldi P, Sada C, Post ML (2006b) Au and NiO nanocrystals doped into porous sol–gel SiO2 films and the effect on optical CO detection. Nanotechnology 17:2429–2433. doi:10.1088/0957-4484/17/10/001

    Article  CAS  Google Scholar 

  • Carneiro NM, Nunes WC, Borges RP, Godinho M, Fernandez-Outon LE, Macedo WAA, Mazali IO (2010) NiO nanoparticles dispersed in mesoporous silica glass. J Phys Chem C 114:18773–18778. doi:10.1021/jp1046886

    Article  CAS  Google Scholar 

  • Casu M, Lai A, Musinu A, Piccaluga G, Solinas S, Bruni S, Cariati F, Beretta E (2001) XRD, TEM, IR and 29Si MAS NMR characterization of NiO–SiO2 nanocomposites. J Mater Sci 36:3731–3735. doi:10.1023/A:1017973716834

    Article  CAS  Google Scholar 

  • Cendrowski K, Chen X, Zielinska B, Kalenczuk RJ, Rummeli MH, Buchner B, Klingeler R, Borowiak-Palen E (2011) Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania. J Nanopart Res 13:5899–5908. doi:10.1007/s11051-011-0307-1

    Article  CAS  Google Scholar 

  • Cerveny S, Schwartz GA, Otegui J, Colmenero J, Loichen J, Westermann S (2012) Dielectric study of hydration water in silica nanoparticles. J Phys Chem C 116:24340–24349. doi:10.1021/jp307826s

    Article  CAS  Google Scholar 

  • Chattopadhyay S, Jana S, Giri S, Majumdar S (2012) An agglomeration induced glassy magnetic state in a carbon nanotube/NiO nanocomposite system. J Phys Condens Matter 24:436005/1–436005/8. doi:10.1088/0953-8984/24/43/436005

    CAS  Google Scholar 

  • Chen FH, Gao Q, Ni JZ (2008) The grafting and release behavior of doxorubicin from Fe3O4@SiO2 core–shell structure nanoparticles via an acid cleaving amide bond: the potential for magnetic targeting drug delivery. Nanotechnology 19:165103/1–165103/9. doi:10.1088/0957-4484/19/16/165103

    CAS  Google Scholar 

  • Chen J, Qian Y, Wei X (2010a) Comparison of magnetic-nanometer titanium dioxide/ferriferous oxide (TiO2/Fe3O4) composite photocatalyst prepared by acid–sol and homogeneous precipitation methods. J Mater Sci 45:6018–6024. doi:10.1007/s10853-010-4685-z

    Article  CAS  Google Scholar 

  • Chen Y, Xu P, Li X (2010b) Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives. Nanotechnology 21:265501/1–265501/10. doi:10.1088/0957-4484/21/26/265501

    CAS  Google Scholar 

  • Chen Z, Cui ZM, Li P, Cao CY, Hong YL, Wu ZY, Song WG (2012) Diffusion induced reactant shape selectivity inside mesoporous pores of Pd@meso-SiO2 nanoreactor in Suzuki coupling reactions. J Phys Chem C 116:14986–14991. doi:10.1021/jp303992g

    Article  CAS  Google Scholar 

  • Cheng W, Tang K, Qi Y, Sheng J, Liu Z (2010) One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core–shell spheres. J Mater Chem 20:1799–1805. doi:10.1039/b919164j

    Article  CAS  Google Scholar 

  • Chopra N, Claypoole L, Bachas LG (2010) Morphological control of Ni/NiO core/shell nanoparticles and production of hollow NiO nanostructures. J Nanopart Res 12:2883–2893. doi:10.1007/s11051-010-9879-4

    Article  CAS  Google Scholar 

  • El Qada EN, Allen SJ, Walker GM (2006) Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem Eng J 124:103–110. doi:10.1016/j.cej.2006.08.015

    Article  Google Scholar 

  • Fan Y, Ma C, Li W, Yin Y (2012) Synthesis and properties of Fe3O4/SiO2/TiO2 nanocomposites by hydrothermal synthetic method. Mater Sci Semicond Process 15:582–585. doi:10.1016/j.mssp.2012.04.013

    Article  CAS  Google Scholar 

  • Fu GR, Hu ZA, Xie LJ, Jin XQ, Xie YL, Wang YX, Zhang ZY, Yang YY, Wu HY (2009) Electrodeposition of nickel hydroxide films on nickel foil and its electrochemical performances for supercapacitor. Int J Electrochem Sci 4:1052–1062

    CAS  Google Scholar 

  • Gao X, Mao H, Lu M, Yang J, Li B (2012) Facile synthesis route to NiO–SiO2 intercalated clay with ordered porous structure: intragallery interfacially controlled functionalization using nickel–ammonia complex for deep desulfurization. Microporous Mesoporous Mater 148:25–33. doi:10.1016/j.micromeso.2011.07.022

    Article  CAS  Google Scholar 

  • Ge Z, Kang Y, Taton TA, Braun PV, Cahill DG (2005) Thermal transport in Au–core polymer–shell nanoparticles. Nano Lett 5:531–535. doi:10.1021/nl047944x

    Article  CAS  Google Scholar 

  • Ghosh Chaudhuri R, Paria S (2012) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112:2373–2433. doi:10.1021/cr100449n

    Article  CAS  Google Scholar 

  • Giri SK, Das NN, Pradhan GC (2011) Synthesis and characterization of magnetite nanoparticles using waste iron ore tailings for adsorptive removal of dyes from aqueous solution. Colloids Surf A 389:43–49. doi:10.1016/j.colsurfa.2011.08.052

    Article  CAS  Google Scholar 

  • Gong JL, Jiang JH, Liang Y, Shen GL, Yu RQ (2006) Synthesis and characterization of surface-enhanced Raman scattering tags with Ag/SiO2 core–shell nanostructures using reverse micelle technology. J Colloid Interface Sci 298:752–756. doi:10.1016/j.jcis.2006.01.024

    Article  CAS  Google Scholar 

  • Huang CH, Chang KP, Ou HD, Chiang YC, Wang CF (2011) Adsorption of cationic dyes onto mesoporous silica. Microporous Mesoporous Mater 141:102–109. doi:10.1016/j.micromeso.2010.11.002

    Article  CAS  Google Scholar 

  • Huang S, Yu X, Dong Y, Li L, Guo X (2012) Spherical polyelectrolyte brushes: ideal templates for preparing pH-sensitive core–shell and hollow silica nanoparticles. Colloids Surf A 415:22–30. doi:10.1016/j.colsurfa.2012.09.004

    Article  CAS  Google Scholar 

  • Ioannou Z, Karasvvidis Ch, Dimirkou A, Antoniadis V (2013) Adsorption of methylene blue and methyl red dyes from aqueous solutions onto modified zeolites. Water Sci Technol 67:1129–1136. doi:10.2166/wst.2013.672

    Article  CAS  Google Scholar 

  • Jeevanandam P, Koltypin Y, Gedanken A (2001) Synthesis of nanosized α-nickel hydroxide by a sonochemical method. Nano Lett 1:263–266. doi:10.1021/nl010003p

    Article  CAS  Google Scholar 

  • Jia PY, Liu XM, Yu M, Luo Y, Fang J, Lin J (2006) Luminescence properties of sol–gel derived spherical SiO2@Gd2(WO4)3:Eu3+ particles with core–shell structure. Chem Phys Lett 424:358–363. doi:10.1016/j.cplett.2006.04.088

    Article  CAS  Google Scholar 

  • Jin CH, Lee JK, Park SH, Lee CM (2011) Effects of passivation and post annealing on the photoluminescence properties of MgO/SiO2 core–shell nanorods. Cryst Res Technol 46:315–320. doi:10.1002/crat.201000542

    Article  CAS  Google Scholar 

  • Joo SH, Park JY, Tsung CK, Yamada Y, Yang P, Somorjai GA (2009) Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat Mater 8:126–131. doi:10.1038/nmat2329

    Article  CAS  Google Scholar 

  • Karim AH, Jalil AA, Triwahyono S, Sidik SM, Kamarudin NHN, Jusoh R, Jusoh NWC, Hameed BH (2012) Amino modified mesostructured silica nanoparticles for efficient adsorption of methylene blue. J Colloid Interface Sci 386:307–314. doi:10.1016/j.jcis.2012.07.043

    Article  CAS  Google Scholar 

  • Karthik K, Selvan GK, Kanagaraj M, Arumugam S, Jaya NV (2010) Particle size effect on the magnetic properties of NiO nanoparticles prepared by a precipitation method. J Alloys Compd 509:181–184. doi:10.1016/j.jallcom.2010.09.033

    Article  Google Scholar 

  • Kim KD, Nam JW, Seo HO, Kim YD, Lim DC (2011) Oxidation of toluene on bare and TiO2-covered NiO–Ni(OH)2 nanoparticles. J Phys Chem C 115:22954–22959. doi:10.1021/jp2065997

    Article  CAS  Google Scholar 

  • Kishore PNR, Jeevanandam P (2012) A novel thermal decomposition approach for the synthesis of silica-iron oxide core–shell nanoparticles. J Alloys Compd 522:51–62. doi:10.1016/j.jallcom.2012.01.076

    Article  CAS  Google Scholar 

  • Larismaa J, Honkanen T, Ge Y, Soderberg O, Friman M, Hannula SP (2011) Effect of annealing on Ag-doped submicron silica powder prepared with modified Stober method. Mater Sci Forum 695:449–452. doi:10.4028/www.scientific.net/MSF.695.449

    Article  CAS  Google Scholar 

  • Lee J, Park JC, Bang JU, Song H (2008) Precise tuning of porosity and surface functionality in Au@SiO2 nanoreactors for high catalytic efficiency. Chem Mater 20:5839–5844. doi:10.1021/cm801149w

    Article  CAS  Google Scholar 

  • Lee SF, Zhu XM, Wang YXJ, Xuan SH, You Q, Chan WH, Wong CH, Wang F, Yu JC, Cheng CHK, Leung KCF (2013) Ultrasound, pH, and magnetically responsive crown-ether-coated core/shell nanoparticles as drug encapsulation and release systems. ACS Appl Mater Interfaces 5:1566–1574. doi:10.1021/am4004705

    Article  CAS  Google Scholar 

  • Liu M, Gan L, Chen L, Xu Z, Zhu D, Hao Z, Chen L (2012) Supramolecular core–shell nanosilica@liposome nanocapsules for drug delivery. Langmuir 28:10725–10732. doi:10.1021/la3021645

    Article  CAS  Google Scholar 

  • Liu J, Ma S, Zang L (2013) Preparation and characterization of ammonium-functionalized silica nanoparticle as a new adsorbent to remove methyl orange from aqueous solution. Appl Surf Sci 265:393–398. doi:10.1016/j.apsusc.2012.11.019

    Article  CAS  Google Scholar 

  • Madrakian T, Afkhami A, Ahmadi M (2012) Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from waste water samples. Spectrochim Acta A 99:102–109. doi:10.1016/j.saa.2012.09.025

    Article  CAS  Google Scholar 

  • Mak SY, Chen DH (2004) Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes Pigments 61:93–98. doi:10.1016/j.dyepig.2003.10.008

    Article  CAS  Google Scholar 

  • Makhlouf SA, Al-Attar H, Kodama RH (2007) Particle size and temperature dependence of exchange bias in NiO nanoparticles. Solid State Commun 145:1–4. doi:10.1016/j.ssc.2007.10.019

    Article  Google Scholar 

  • Nassar NN, Ringsred A (2012) Rapid adsorption of methylene blue from aqueous solutions by goethite nanoadsorbents. Environ Eng Sci 29:790–797. doi:10.1089/ees.2011.0263

    Article  CAS  Google Scholar 

  • Okada T, Yoshido S, Miura H, Yamakami T, Sakai T, Mishima S (2012) Swellable microsphere of a layered silicate produced by using monodispersed silica particles. J Phys Chem C 116:21864–21869. doi:10.1021/jp307108t

    Article  CAS  Google Scholar 

  • Pal S, Ghorai S, Das C, Samrat S, Ghosh A, Panda AB (2012) Carboxymethyl tamarind-g-poly(acrylamide)/silica: a high performance hybrid nanocomposite for adsorption of methylene blue dye. Ind Eng Chem Res 51:15546–15556. doi:10.1021/ie301134a

    Article  CAS  Google Scholar 

  • Peng H, Cui B, Wang Y (2013) Bifunctional Fe3O4@Gd2O3:Eu3+ nanocomposites obtained by the homogeneous precipitation method. Mater Res Bull 48:1767–1771. doi:10.1016/j.materresbull.2013.01.001

    Article  CAS  Google Scholar 

  • Proenca MP, Sousa CT, Pereira AM, Tavares PB, Ventura J, Vazquez M, Araujo JP (2011) Size and surface effects on the magnetic properties of NiO nanoparticles. Phys Chem Chem Phys 13:9561–9567. doi:10.1039/c1cp00036e

    Article  CAS  Google Scholar 

  • Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core–shell nanoclusters for biomedical applications. J Nanopart Res 8:489–496. doi:10.1007/s11051-005-9011-3

    Article  CAS  Google Scholar 

  • Radhakrishnan S, Siju CR, Mahanta D, Patil S, Madras G (2009) Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. Electrochim Acta 54:1249–1254. doi:10.1016/j.electacta.2008.08.069

    Article  CAS  Google Scholar 

  • Ren Y, Chen M, Zhang Y, Wu L (2010) Fabrication of rattle-type TiO2/SiO2 core/shell particles with both high photoactivity and UV-shielding property. Langmuir 26:11391–11396. doi:10.1021/la1008413

    Article  CAS  Google Scholar 

  • Sharma SK, Vargas JM, De Biasi E, Beron F, Knobel M, Pirota KR, Meneses CT, Kumar S, Lee CG, Pagliuso PG, Rettori C (2010) The nature and enhancement of magnetic surface contribution in model NiO nanoparticles. Nanotechnology 21:035602/1–035602/7. doi:10.1088/0957-4484/21/3/035602

    CAS  Google Scholar 

  • Shim H, Dutta P, Seehra MS, Bonevich J (2008) Size dependence of the blocking temperatures and electron magnetic resonance spectra in NiO nanoparticles. Solid State Commun 145:192–196. doi:10.1016/j.ssc.2007.10.026

    Article  CAS  Google Scholar 

  • Sohn JR (2004) Correlation between acidic properties of nickel catalysts and catalytic activities for ethylene dimerization and butene isomerisation. Catal Surv Asia 8:249–263. doi:10.1007/s10563-004-9116-1

    Article  CAS  Google Scholar 

  • Syed-Hassan SSA, Li CZ (2011a) Catalytic oxidation of ethane with oxygen using fluidised nanoparticle NiO catalyst. Appl Catal A 405:166–174. doi:10.1016/j.apcata.2011.08.008

    Article  CAS  Google Scholar 

  • Syed-Hassan SSA, Li CZ (2011b) NiO reduction with hydrogen and light hydrocarbons: Contrast between SiO2-supported and unsupported NiO nanoparticles. Appl Catal A 398:187–194. doi:10.1016/j.apcata.2011.03.033

    Article  CAS  Google Scholar 

  • Tadic M, Panjan M, Markovic D, Milosevic I, Spasojevic V (2011) Unusual magnetic properties of NiO nanoparticles embedded in a silica matrix. J Alloys Compd 509:7134–7138. doi:10.1016/j.jallcom.2011.04.032

    Article  CAS  Google Scholar 

  • Thota S, Kumar J (2007) Sol–gel synthesis and anomalous magnetic behaviour of NiO nanoparticles. J Phys Chem Solids 68:1951–1964. doi:10.1016/j.jpcs.2007.06.010

    Article  CAS  Google Scholar 

  • Tsai SW, Chiou JC (2011) Improved crystalline structure and H2S sensing performance of CuO–Au–SnO2 thin film using SiO2 additive concentration. Sens Actuators B 152:176–182. doi:10.1016/j.snb.2010.12.004

    Article  CAS  Google Scholar 

  • Tyagi M, Tomar M, Gupta V (2013) NiO nanoparticle-based urea biosensor. Biosens Bioelectron 41:110–115. doi:10.1016/j.bios.2012.07.062

    Article  CAS  Google Scholar 

  • Vaidya S, Ramanujachary KV, Lofland SE, Ganguli AK (2009) Synthesis of homogeneous NiO@SiO2 core–shell nanostructures and the effect of shell thickness on the magnetic properties. Cryst Growth Des 9:1666–1670. doi:10.1021/cg800881p

    Article  CAS  Google Scholar 

  • Valdes H, Tardon RF, Zaror CA (2012) Methylene blue removal from contaminated waters using heterogeneous catalytic ozonation promoted by natural zeolite: mechanism and kinetic approach. Environ Technol 33:1895–1903. doi:10.1080/09593330.2011.650222

    Article  CAS  Google Scholar 

  • Wang S, Li H (2006) Structure directed reversible adsorption of organic dye on mesoporous silica in aqueous solution. Microporous Mesoporous Mater 97:21–26. doi:10.1016/j.micromeso.2006.08.005

    Article  CAS  Google Scholar 

  • Wang XB, Liu J, Xu ZD, Li J (2011) A facial route to prepare hollow SiO2 spheres decorated with NiO nanoparticles. Asian J Chem 23:2335–2338

    CAS  Google Scholar 

  • Wang L, Hao ZC, Dai L, Li Y, Zhou H (2012) A planar, impedancemetric NO2 sensor based NiO nanoparticles sensing electrode. Mater Lett 87:24–27. doi:10.1016/j.matlet.2012.06.032

    Article  CAS  Google Scholar 

  • Wang Y, Chen E, Lai H, Lu B, Hu Z, Qin X, Shi W, Du G (2013) Enhanced light scattering and photovoltaic performance for dye-sensitized solar cells by embedding submicron SiO2/TiO2 core/shell particles in photoanode. Ceram Int 39:5407–5413. doi:10.1016/j.ceramint.2012.12.048

    Article  CAS  Google Scholar 

  • Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z (2011) Multifunctional composite core–shell nanoparticles. Nanoscale 3:4474–4502. doi:10.1039/c1nr11000d

    Article  CAS  Google Scholar 

  • Wu D, Zheng P, Chang PR, Ma X (2011) Preparation and characterization of magnetic rectorite/iron oxide nanocomposites and its application for the removal of the dyes. Chem Eng J 174:489–494. doi:10.1016/j.cej.2011.09.029

    Article  CAS  Google Scholar 

  • Wu X, Xing G, Tan SLJ, Webster RD, Sum TC, Yeow EKL (2012) Hole transfer dynamics from dye molecules to p-type NiO nanoparticles: effects of processing conditions. Phys Chem Chem Phys 14:9511–9519. doi:10.1039/c2cp40926g

    Article  CAS  Google Scholar 

  • Wu X, Zhang B, Hu Z (2013) Microwave hydrothermal synthesis of core–shell structured boehmite. Mater Lett 91:249–251. doi:10.1016/j.matlet.2012.10.017

    Article  CAS  Google Scholar 

  • Xie CN, Yang ZM (2011) Synthesis and characterization of mono-dispersed Y3Al5O12:Er3+-coated SiO2 nanoparticles by co-precipitation process. J Nanopart Res 13:347–354. doi:10.1007/s11051-010-0036-x

    Article  CAS  Google Scholar 

  • Yang ST, Luo J, Zhou Q, Wan J, Ma C, Liao R (2012) Adsorption behaviour of methylene blue on carbon nanoparticles. Micro Nano Lett 7:1060–1063. doi:10.1049/mnl.2012.0676

    Article  CAS  Google Scholar 

  • Yao Y, Miao S, Yu S, Ma LP, Sun H, Wang S (2012) Fabrication of Fe3O4/SiO2 core/shell nanoparticles attached to graphene oxide and its use as an adsorbent. J Colloid Interface Sci 379:20–26. doi:10.1016/j.jcis.2012.04.030

    Article  CAS  Google Scholar 

  • Yu Q, Ma X, Wang M, Yu C, Bai T (2008) Influence of embedded particles on microstructure, corrosion resistance and thermal conductivity of CuO/SiO2 and NiO/SiO2 nanocomposite coatings. Appl Surf Sci 254:5089–5094. doi:10.1016/j.apsusc.2008.02.042

    Article  CAS  Google Scholar 

  • Yuan C, Hou L, Feng Y, Xiong S, Zhang X (2013) Sacrificial template synthesis of short mesoporous NiO nanotubes and their application in electrochemical capacitors. Electrochim Acta 88:507–512. doi:10.1016/j.electacta.2012.10.115

    Article  CAS  Google Scholar 

  • Zhang Z, Kong J (2011) Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J Hazard Mater 193:325–329. doi:10.1016/j.jhazmat.2011.07.033

    Article  CAS  Google Scholar 

  • Zhang A, Zhang R, Zhang N, Hong S, Zhang M (2010a) Synthesis of new NiO–SiO2–sol pillared montmorillonite and its catalytic activity in the hydrogenation of benzene. Kinet Catal 51:710–713. doi:10.1134/S0023158410050125

    Article  CAS  Google Scholar 

  • Zhang S, Wang S, Li S (2010b) Bonding MnO2/Fe3O4 shell–core nanostructures to catalyze H2O2 degrading organic dyes. J Nanosci Nanotechnol 10:5612–5617. doi:10.1166/jnn.2010.2436

    Article  CAS  Google Scholar 

  • Zhang Z, Balogh D, Wang F, Willner I (2013) Smart mesoporous SiO2 nanoparticles for the DNAzyme-induced multiplexed release of substrates. J Am Chem Soc 135:1934–1940. doi:10.1021/ja311385y

    Article  CAS  Google Scholar 

  • Zhao H, Yin FJ, Xu XY, Tong Z, Zheng JW, Zhao G (2007) A novel catalyst SiO2@NiO for reduction of 4-NP. Synth React Inorg Nanomet Chem 37:15–18. doi:10.1080/15533170601172369

    Article  CAS  Google Scholar 

  • Zhou ZY, Tian N, Li JT, Broadwell I, Sun SG (2011) Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage. Chem Soc Rev 40:4167–4185. doi:10.1039/c0cs00176g

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The award of research fellowship (JRF/SRF) to Ms. Nisha Bayal by the Council of Scientific and Industrial Research, Government of India is gratefully acknowledged. Thanks are due to the Institute Instrumentation Centre, IIT Roorkee for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jeevanandam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayal, N., Jeevanandam, P. Synthesis of SiO2@NiO magnetic core–shell nanoparticles and their use as adsorbents for the removal of methylene blue. J Nanopart Res 15, 2066 (2013). https://doi.org/10.1007/s11051-013-2066-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2066-7

Keywords

Navigation