Skip to main content
Log in

Percolation network dynamicity and sheet dynamics governed viscous behavior of polydispersed graphene nanosheet suspensions

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The viscosity of polydispersed graphene nanosheet (5 nm–1.5 μm) suspensions (GNS) and its behavior with temperature and concentration have been experimentally determined. A physical mechanism for the enhanced viscosity over the base fluids has been proposed for the polydispersed GNSs. Experimental data reveal that enhancement of viscosity for GNSs lies in between those of carbon nanotube suspensions (CNTSs) and nano-alumina suspensions, indicating the hybrid mechanism of percolation (like CNTs) and Brownian motion-assisted sheet dynamics (like alumina particles). Sheet dynamics and percolation, along with a proposed percolation network dynamicity factor, have been used to determine a dimensionally consistent analytic model to accurately determine and explain the viscosity of polydispersed GNSs. The model also provides insight into the mechanisms of viscous behavior of different dilute nanoparticle suspensions. The model has been found to be in agreement with the GNS experimental data, and even for CNT (diameter 20 nm, length 10 μm) and nano-alumina (45 nm) suspensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anoop KB, Kabelac S, Sundararajan T, Das SK (2009) Rheological and flow characteristics of nanofluids: influence of electro-viscous effects and particle agglomeration. J App Phys 106:034909

    Article  Google Scholar 

  • Avsec J, Oblak M (2007) The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics. Int J Heat Mass Trans 50:4331–4341

    Article  CAS  Google Scholar 

  • Bachelor GK (1977) The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117

    Article  Google Scholar 

  • Banerjee N, Koster G, Rijnders G (2013) Submicron patterning of epitaxial PbZr0.52Ti0.48O3 heterostructures. Appl Phys Lett 102:142909

    Article  Google Scholar 

  • Chandrasekar M, Suresh S, Bose AC (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluids. Exp Thermal Fluids Sci 34:210–216

    Article  CAS  Google Scholar 

  • de Bruijin H (1942) The viscosity of suspensions of spherical particles. Recueil des trvaux chimiques des Pays-Bas 61:863–874

    Article  Google Scholar 

  • Dhar P, Gupta SS, Chakraborty S, Pattamatta A, Das SK (2013) Role of percolation and sheet dynamics during heat conduction in graphene nanofluids. Appl Phys Lett 102:163114

    Article  Google Scholar 

  • Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228

    Article  CAS  Google Scholar 

  • Eilers AM, Die HV (1941) Viskosititat von Emulsionen hochviskoser Stoffe Funktion der Konzentration. Kolloid Zeitschrift 97:313–321

    Article  CAS  Google Scholar 

  • Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Annalen der Physik 19:289–306

    Article  CAS  Google Scholar 

  • Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  • Graham AL (1981) On the viscosity of suspensions of solid spheres. Appl Sci Res 37:275–286

    Article  CAS  Google Scholar 

  • Gupta SS, Siva VM, Krishnan S, Sreeprasad TS, Singh PK, Pradeep T, Das SK (2011) Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J App Phys 110:084302

    Article  Google Scholar 

  • He Y, Jin Y, Chen H, Ding Y, Cang D, Lu H (2007) Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe. Int J Heat Mass Trans 50:2272–2281

    Article  CAS  Google Scholar 

  • Kole M, Dey TK (2010) Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J Phys D Appl Phys 43:315501

    Article  Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol 3:137–152

    Article  CAS  Google Scholar 

  • Kulkarni DP, Das DK, Chukwi GA (2006) Temperature dependent rheological property of CuO nanoparticles suspension. J Nanosci Nanotech 2006(6):1150–1154

    Article  Google Scholar 

  • Kurra N, Bhadram VS, Narayana C, Kulkarni GU (2013) Few layer graphene to graphitic films: infrared photoconductive versus bolometric response. Nanoscale 5:381–389

    Article  CAS  Google Scholar 

  • Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101

    Article  CAS  Google Scholar 

  • Masoumi N, Sohrabi N, Behzadmehr A (2009) A new model for calculating the effective viscosity of nanofluids. J Appl Phys D 42:055501

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2008) Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:560–568

    Article  CAS  Google Scholar 

  • Namburu PK, Kulkarni DP, Misra D, Das DK (2007) Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. Exp Therm Fluid Sci 32:397–402

    Article  CAS  Google Scholar 

  • Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Mintsa HA (2007) Temperature and particle size dependent viscosity data for water based nanofluids–hysteresis phenomenon. Int J Heat Fluid Flow 28:1492–1506

    Article  CAS  Google Scholar 

  • Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Trans 11:151–170

    Article  CAS  Google Scholar 

  • Phuoc TX, Massoudi M, Chen RH (2011) Viscosity and thermal conductivity of nanofluids containing multi-walled carbon nanotubes stabilized by chitosan. Int J Therm Sci 50:12–18

    Article  CAS  Google Scholar 

  • Prasher R, Song D, Wang J, Phelan P (2006) Measurements of nanofluid viscosity and its implications for thermal applications. Appl Phys Lett 89:133108

    Article  Google Scholar 

  • Sethi S, Ge L, Ci L, Ajayan PM, Dhinojwala A (2008) Gecko-inspired carbon nanotube-based self-cleaning adhesives. Nano Lett 8(3):822–825

    Article  CAS  Google Scholar 

  • Tseng WJ, Lin KC (2000) Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mat Sci Eng 355:186–192

    Article  Google Scholar 

  • Wang XQ, Mujumdar AS (2007) Heat transfer characters of nanofluids: a review. Int J Therm Sci 46:1–19

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Defense Materials and Stores Research & Development Establishment (DMSRDE) (a Defense Research and Development Organization (DRDO) laboratory) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarit K. Das.

Additional information

Purbarun Dhar and Mohammad Hasan Dad Ansari have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhar, P., Ansari, M.H.D., Gupta, S.S. et al. Percolation network dynamicity and sheet dynamics governed viscous behavior of polydispersed graphene nanosheet suspensions. J Nanopart Res 15, 2095 (2013). https://doi.org/10.1007/s11051-013-2095-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-013-2095-2

Keywords

Navigation