Skip to main content
Log in

Exchange-biased oxide-based core–shell nanoparticles produced by seed-mediated growth in polyol

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We report, for the first time, the synthesis of magnetically contrasted oxide-based core–shell nanoparticles using the polyol process. Iron oxide nanoparticles were first prepared by forced hydrolysis of iron acetate salt in a polyol and were then recovered by centrifugation and re-dispersed in a fresh cobalt acetate polyol solution. The microstructure of the resulting powder was finely characterized combining X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. Interestingly, the produced particles appeared to be of a very high crystalline quality with a perfect epitaxy between the spinel-like iron oxide core and the rock-salt-like cobalt monoxide shell, leading to a substantial exchange bias at low temperatures. As a consequence, a net blocking temperature, T B, increase was measured on the superparamagnetic iron oxide cores when they were coated by CoO, reaching a T B value of 298 K, very close to room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artus M, Ben Tahar L, Herbst F, Smiri LS, Villain F, Yaacoub N, Grenèche JM, Ammar S, Fiévet F (2011) Size-dependent magnetic properties of CoFe2O4 nanoparticles prepared in polyol. J Phys Condens Matter 23(50):506001–506011

    Article  Google Scholar 

  • Basti H, Ben Tahar L, Smiri SL, Herbst F, Vaulay MJ, Chau F, Ammar S, Benderbous S (2010) Catechol derivatives-coated Fe3O4 and γ-Fe2O3 nanoparticles as potential MRI contrast agents. J Colloid Interface Sci 341(2):248–254

    Article  Google Scholar 

  • Beamson G, Briggs D (1992) High resolution monochromated X-ray photoelectron spectroscopy of organic polymers: a comparison between solid state data for organic polymers and gas phase data for small molecules. Mol Phys 76(4):036–919

    Article  Google Scholar 

  • Beji Z, Smiri LS, Yaacoub N, Grenèche J-M, Menguy N, Ammar S, Fiévet F (2010) Annealing effect on the magnetic properties of polyol-made Ni–Zn ferrite nanoparticles. Chem Mater 22(4):1350–1366

    Article  Google Scholar 

  • Berkowitz AE, Tagano K (1999) Exchange anisotropy: a review. J Magn Magn Mater 200(1–3):552–570

    Article  Google Scholar 

  • Briggs D, Seah MP (1990) Practical surface analysis in Auger and X-ray photoelectron spectroscopy, vol 1. Wiley, Chichester

    Google Scholar 

  • Dormann JL, Fiorani D, Cherkaoui R, Spinu L, Lucari F, D’Orazio F, Noguès M, Tronc E, Jolivet JP, Garcia A (1999) Collective glass state in a magnetic nanoparticle system. Nanostructured Mater 12(5–8):757–762

    Article  Google Scholar 

  • Grasset F, Labhsetwar N, Park DC, Saito N, Haneda H, Cador O, Roisnel T, Mornet S, Duguet E, Portier J, Etourneau J (2002) Synthesis and magnetic characterization of zinc ferrite nanoparticles with different environments: powder, colloidal solution, and zinc ferrite–silica core–shell nanoparticles. Langmuir 18(21):8209–9216

    Article  Google Scholar 

  • Hansen MF, Mørup S (1999) Estimation of blocking temperatures from ZFC/FC curves. J Magn Magn Mater 203(1–3):214–216

    Article  Google Scholar 

  • Ijiri Y, Borchers JA, Erwin RW, Lee SH, van der Zaag PJ, Wolf RM (1998) Perpendicular coupling in exchange-biased Fe3O4/CoO superlattices. Phys Rev Lett 80(3):608–611

    Article  Google Scholar 

  • Ijiri Y, Schulthess TC, Borchers JA, van der Zaag PJ, Erwin RW (2007) Link between perpendicular coupling and exchange biasing in Fe3O4/CoO multilayers. Phys Rev Lett 99(14):147201–147204

    Article  Google Scholar 

  • Kleint CA, Krause MK, Höhne R, Walter T, Semmelhack HC, Lorenz M, Esquinazi P (1998) Exchange anisotropy in epitaxial Fe3O4/CoO and Fe3O4/CoxFe3−xO4 bilayers grown by pulsed laser deposition. J Appl Phys 84(9):5097–5105

    Article  Google Scholar 

  • Kundmann MK, Krivanek OL (1991) Automated processing of parallel-detection EELS data. Microsc Microanal Microstruct 2(2,3):245–256

    Google Scholar 

  • Lutterotti L, Matthies S, Wenk HR (1999) MAUD: a friendly Java program for material analysis using diffraction. IUCr CPD Newsl 21:14–15

    Google Scholar 

  • Meiklejohn WH, Bean CP (1956) New magnetic anisotropy. Phys Rev 102(5):1413–1414

    Article  Google Scholar 

  • Meiklejohn WH, Bean CP (1957) New magnetic anisotropy. Phys Rev 105(3):904–913

    Article  Google Scholar 

  • Nogués J, Schuller IK (1999) Exchange bias. J Magn Magn Mater 192(2):203–232

    Article  Google Scholar 

  • Nogues J, Sort J, Langlais V, Skumryev V, Surinach S, Munoz JS, Baro MD (2005) Exchange bias in nanostructure. Phys Rep 422(3):65–117

    Article  Google Scholar 

  • Patnaik P (2003) Handbook of inorganic chemical compounds, vol 1. McGraw-Hill, New York

    Google Scholar 

  • Pichon P, Lefevre C, Ulhaq-Bouillet C, Grenèche J-M, Toumi M, Mhiri T, Bégin-Colin S (2013) High exchange bias in Fe3−δO4–CoO core-shell nanoparticles synthesized by a one-pot seed-mediated growth method. J Phys Chem C 117(21):11436–11443

    Article  Google Scholar 

  • Trohidou KN, Vasilakaki M, Del Bianco L, Fiorani D, Testa AM (2007) Exchange bias in a magnetic ordered/disordered nanoparticle system: a Monte Carlo simulation study. J Magn Magn Mater 316(2):E82–E85

    Article  Google Scholar 

  • Valenzuela R, Ammar S, Herbst F, Ortega-Zempoalteca R (2011) Low field microwave absorption in Ni–Zn ferrite nanoparticles in different aggregation states. Nanosci Nanotechnol Lett 3:501–598

    Article  Google Scholar 

  • van der Zaag JP, Ball AR, Feiner LF, Wolf RM, van der Heidjen PAA (1996) Exchange biasing in MBE grown Fe3O4/CoO bilayers: the antiferromagnetic layer thickness dependence. J Appl Phys 79(8):5103–5106

    Article  Google Scholar 

  • van der Zaag PJ, Ijiri Y, Borchers JA, Feiner LF, Wolf RW, Gaines JM, Erwin RW, Verheijen MA (2000) Difference between blocking and Néel temperatures in the exchange biased Fe3O4/CoO system. Phys Rev Lett 84(26):6102–6105

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Philippe Decorse (Univ. Paris Diderot) and Dr. Y. Klein (Univ. Pierre & Marie Curie) for their technical XPS and PPMS assistance and fruitful discussions. This work was supported by ANR-CONACyT research program (MINAFC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souad Ammar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3798 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaudisson, T., Ourry, L., Hammoud, H. et al. Exchange-biased oxide-based core–shell nanoparticles produced by seed-mediated growth in polyol. J Nanopart Res 16, 2359 (2014). https://doi.org/10.1007/s11051-014-2359-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2359-5

Keywords

Navigation