Skip to main content
Log in

Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H2O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H2O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H2O—1/1), 509–535 nm (PEG/H2O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson R, Buscall R, Eldridge R, Mulvaney P, Scales PJ (2014) Ostwald ripening of comb polymer stabilised Ag salt nanoparticles. Colloids Surf A 459:58–64

    Article  Google Scholar 

  • Ashcroft NW, Mermin ND (1976) Solid state physics. Holt, Rinehart and Winston, New York

    Google Scholar 

  • Baba K, Okada T, Kaneko T, Hatakeyama R, Yoshiki H (2007) Investigation of gas–liquid interface in atmospheric-pressure micro plasma with solution. Thin Solid Films 515:4308–4311

    Article  Google Scholar 

  • Cha IY, Ahn M, Yood SJ, Sung YE (2014) Facile synthesis of carbon supported metal nanoparticles via sputtering onto a liquid substrate and their electrochemical application. RSC Adv 4:38575–38580

    Article  Google Scholar 

  • Dykman LA, Khlebtsov NG (2011) Gold nanoparticles in biology and medicine: recent advances and prospects. Acta Nat 3:34–55

    Google Scholar 

  • Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217

    Article  Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    Article  Google Scholar 

  • Gracia R, Vijayakrishna K, Mecerreyes D (2014) Poly(ionic liquid)s with redox active counter-anions: all-in-one reactants and stabilizers for the synthesis of functional colloids. React Funct Polym 79:54–58

    Article  Google Scholar 

  • Hatakeyama Y, Takahashi S, Nishikawa K (2010) Can temperature control the size of Au nanoparticles prepared in ionic liquids by sputter deposition technique? J Phys Chem C 114:11098–11102

    Article  Google Scholar 

  • Hatakeyama Y, Morita T, Takahashi S, Onishi K, Nishikawa K (2011a) Synthesis of gold nanoparticles in liquid polyethylene glycol by sputter deposition and temperature effects on their size and shape. J Phys Chem C 115:3279–3285

    Article  Google Scholar 

  • Hatakeyama Y, Onishi K, Nishikawa K (2011b) Effects of sputtering conditions on formation of gold nanoparticles in sputter deposition technique. RSC Adv 1:1815–1821

    Article  Google Scholar 

  • Hosokawa M, Nogi K, Naito M, Yokoyama T (2007) Nanoparticle technology handbook. Elsevier, Amsterdam

    Google Scholar 

  • Huang L, Nishinari K (2001) Interaction between poly (ethylene glycol) and water as studied by differential scanning calorimetry. J Polym Sci B 39:496–506

    Article  Google Scholar 

  • Iimori T, Hatakeyama Y, Nishikawa K, Kato M, Ohta N (2013) Visible photoluminescence of gold nanoparticles prepared by sputter deposition technique in a room-temperature ionic liquid. Chem Phys Lett 586:79–82

    Article  Google Scholar 

  • Israelachvili J (1997) The different faces of poly (ethylene glycol). Proc Natl Acad Sci USA 94:8378–8379

    Article  Google Scholar 

  • Kamat PV (2002) Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J Phys Chem B 106:7729–7744

    Article  Google Scholar 

  • Kaneko T, Takahashi S, Hatakeyama R (2014) Plasma process on ionic liquid substrate for morphology controlled nanoparticles. In: ionic liquids—new aspects for the future. InTech, pp. 617–632. doi: 10.5772/52095 http://cdn.intechopen.com/pdfs-wm/40913.pdf. Accessed 6 Jan 2015

  • Kimling J, Maier M, Okenve B, Kotaidis V, Ballot H, Plech A (2006) Turkevich method for gold nanoparticle synthesis revisited. J Phys Chem B 110:15700–15707

    Article  Google Scholar 

  • Kolská Z, Dvořáková D, Míka J, Boublík T (2011) Volumetric behavior of the binary systems benzene–cyclohexane and benzene–2,2,4-trimethyl-pentane at temperatures 293.15–323.15 K. Fluid Phase Equilib 303:157–161

    Article  Google Scholar 

  • Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV (2008) Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev 77:233–257

    Article  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PH, Chiu JF, Che CM (2007) Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem 12:527–534

    Article  Google Scholar 

  • Mafuné F, Kohno JY, Takeda Y, Kondow T, Sawabe H (2000) Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J Phys Chem B 104:9111–9117

    Article  Google Scholar 

  • Michael D, Mingos P (2014) Structure bonding. Historical introduction to gold colloids, clusters and nanoparticles. Springer, Heidelberg

    Google Scholar 

  • Panigrahi S, Kundu S, Ghosh S, Nath S, Pal T (2004) General method of synthesis for metal nanoparticles. J Nanopart Res 6:411–414

    Article  Google Scholar 

  • Pillai ZS, Kamat PV (2004) What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? J Phys Chem B 108:945–951

    Article  Google Scholar 

  • Roustom BE, Fóti G, Comninellis C (2005) Preparation of gold nanoparticles by heat treatment of sputter deposited gold on boron-doped diamond film electrode. Electrochem Commun 7:398–405

    Article  Google Scholar 

  • Sahoo GP, Basu S, Samanta S, Misra A (2014) Microwave-assisted synthesis of anisotropic gold nanocrystals in polymer matrix and their catalytic activities. J Exp Nanosci. doi:10.1080/17458080.2013.877163

    Google Scholar 

  • Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727

    Article  Google Scholar 

  • Schmid G, Corain B (2003) Nanoparticulated gold: syntheses, structures, electronics, and reactivities. Eur J Inorg Chem 17:3081–3098

    Article  Google Scholar 

  • Scholl JA, Koh AL, Dionne JA (2012) Quantum plasmon resonances of individual metallic nanoparticles. Nature 483:421–427

    Article  Google Scholar 

  • Siegel J, Kvítek O, Ulbrich P, Kolská Z, Slepička P, Švorčík V (2012) Progressive approach for metal nanoparticle synthesis. Mater Lett 89:47–50

    Article  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176–2179

    Article  Google Scholar 

  • Torimoto T, Okazaki KI, Kiyama T, Hirahara K, Tanaka N, Kuwabata S (2006) Sputter deposition onto ionic liquids: simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Appl Phys Lett 89:243117

    Article  Google Scholar 

  • Valueva SV, Kipper AI, Borovikova LN, Matveeva NA (2010) The influence of the nature of a nanoparticle and polymer matrix on the morphological characteristics of polymeric nanostructures. Russ J Phys Chem 84:2110–2115

    Article  Google Scholar 

  • Vanecht E, Binnemans K, Patskovsky S, Meunier M, Seo JW, Stappers L, Fransaer J (2012) Stability of sputter-deposited gold nanoparticles in imidazolium ionic liquids. Phys Chem Chem Phys 14:5662–5671

    Article  Google Scholar 

  • Wender H, de Oliveira LF, Feil AF, Lissner E, Migowski P, Meneghetti MR, Teixeira SR, Dupont J (2010) Synthesis of gold nanoparticles in a biocompatible fluid from sputtering deposition onto castor oil. Chem Commun 46:7019–7021

    Article  Google Scholar 

  • Zhang L, Wang E (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9:132–157

    Article  Google Scholar 

  • Zhou J, Ralston J, Sedev R, Beattie DA (2009) Functionalized gold nanoparticles: synthesis, structure and colloid stability. J Colloid Interface Sci 331:251–262

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the GACR under Projects 13-06609S and 14-18131S.

Conflict of interest

The authors report no conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Slepička.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slepička, P., Elashnikov, R., Ulbrich, P. et al. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions. J Nanopart Res 17, 11 (2015). https://doi.org/10.1007/s11051-014-2850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2850-z

Keywords

Navigation