Skip to main content
Log in

Tiered guidance for risk-informed environmental health and safety testing of nanotechnologies

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Provided the rapid emergence of novel technologies containing engineered nanomaterials, there is a need to better understand the potential environmental, health, and safety effects of nanotechnologies before wide-scale deployment. However, the unique properties of nanomaterials and uncertainty regarding applicable test methods have led to a lack of consensus regarding the collection and evaluation of data related to hazard and exposure potentials. Often, overly conservative approaches to characterization and data collection result in prolonged, unfocused, or irrelevant testing, which increases costs and delays deployment. In this paper, we provide a novel testing guidance framework for determining whether a nanotechnology has the potential to release material with nano-specific parameters that pose a risk to humans or the environment. The framework considers methods to categorize nanotechnologies by their structure and within their relevant-use scenarios to inform testing in a time- and resource-limited reality. Based on the precedent of dredged sediment testing, a five-tiered approach is proposed in which opportunities are presented to conclude testing once sufficient risk-related information has been collected, or that the technology in question does not require nano-specific scrutiny. A series of screening stages are suggested, covering relevant aspects including size, surface area, distribution, unique behaviors, and release potential. The tiered, adaptive guidance approach allows users to concentrate on collecting the most relevant data, thus accelerating technology deployment while minimizing risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Society for Testing and Materials (ASTM) (2006) Standard terminology relating to nanotechnology. E 2456–06

  • American Society for Testing and Materials (ASTM) (2007) Standard guide for handling unbound engineered nanoscale particles in occupational settings. E 2535–07

  • Asharani PV, Iianwu Y, Gong Z, Valiyaveettil S (2011) Comparison of the toxicity of silver, gold and platinum nanoparticle in developing zebrafish embryos. Nanotoxicol 5:43–54

    Article  Google Scholar 

  • Bae S, Hwang Y, Lee Y, Lee SK (2013) Effects of water chemistry on aggregation and soil adsorption of silver nanoparticles. Environ Health Toxicol 28:e2013006

    Article  Google Scholar 

  • Bednar AJ, Poda AR, Mitrano DM, Kennedy AJ, Gray EP, Ranville JF, Hayes CA, Crocekr FH, Steevens JA (2013) Comparison of on-line detectors for field flow fractionation analysis of nanomaterials. Talanta 104:140–148

    Article  Google Scholar 

  • Benn T, Cavanagh B, Hristovski K, Posner JD, Westerhoff P (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39:1875–1882

    Article  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    Article  Google Scholar 

  • Bowman CR, Bailey FC, Elrod-Erickson M, Neigh A, Otter R (2012) Effects of silver nanoparticles on zebrafish (Danio rerio) and Escherichia coli (ATCC 25922): a comparison of toxicity based on total surface area versus mass concentration of particles in a model eukaryotic and prokaryotic system. Environ Toxicol Chem 31(8):1793–1800

    Article  Google Scholar 

  • Brouwer DH (2012) Control banding approaches for nanomaterials. Ann Occup Hyg 56(5):506–514

    Google Scholar 

  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent pro-inflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in enhanced activity of ultrafines. Toxicol Appl Pharmacol 175:191–199

    Article  Google Scholar 

  • Brydson RM, Hammond C (2005) Generic methodologies for nanotechnology: classification and fabrication. In: Kelsall RW, Hamley IW, Geoghegan M (eds) Nanoscale science and technology. Wiley, Chichester, pp 1–55

    Chapter  Google Scholar 

  • Calliess C, Stockhaus H (2012) Precautionary principle and nanomaterials: REACH revisited. J Eur Environ Plan Law 9(2):113–135

    Article  Google Scholar 

  • Canis L, Linkov I, Seager TP (2010) Application of stochastic multiattribute analysis to assessment of single walled carbon nanotube synthesis processes. Environ Sci Technol 44:8704–8711

    Article  Google Scholar 

  • Choi J-Y, Ramchandran G, Kandlikar M (2009) The impact of toxicity testing costs on nanomaterial regulation. Environ Sci Technol 43(9):3030–3034

    Article  Google Scholar 

  • Cohen Y, Rallo R, Liu R, Liu HH (2012) In silico analysis of nanomaterials hazard and risk. Acc Chem Res 46(3):802–812

    Article  Google Scholar 

  • Coleman JC, Kennedy AJ, Bednar AJ, Ranville JF, Laird JG, Harmon AR, Hayes CA, Gray EP, Higgins CP, Lotufo G, Steevens JA (2013) Comparing the effects of nanosilver size and coating variations on bioavailability, internalization, and elimination, using Lumbriculus variegatus. Environ Toxicol Chem 23:2069–2077

    Article  Google Scholar 

  • Cooper RJ (1990) Stage-gate systems: a new tool for managing new products. Bus Horizons 33(3):44–54

    Article  Google Scholar 

  • Crane M, Handy RD, Garrod J, Owen R (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicol 17:421–437

    Article  Google Scholar 

  • Davies JC (2009) Oversight of next generation nanotechnology. Woodrow Wilson International Center for Scholars, Washington, DC

    Google Scholar 

  • Demirdjian ZS (2005) Problems and prospects of nanotechnology: implications for marketing innovations. Proceedings of the Academy of Business and Administrative Sciences conference, Quebec City, Canada, July 20–22

  • Donaldson K, Li X, MacNee W (1998) Ultrafine (nanometre) particle mediated lung injury. J Aerosol Sci 29(5–6):553–560

    Article  Google Scholar 

  • Eddy D, Krishamurty S, Grosse I, Witherell P, Wileden J, Lewis K (2014) An integrated approach to information modeling for the sustainable design of products. J Comput Inf Sci Eng 14:1–13

    Article  Google Scholar 

  • el Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  Google Scholar 

  • Environmental Defense DuPont Nano Partnership (2007) Nano risk framework. http://www.nanoriskframework.com/files/2011/11/6496_Nano-Risk-Framework.pdf. Accessed 22 Aug 2014

  • Environmental Law Institute (2005) Securing the promise of nanotechnology: is U.S. environmental law up to the job?. Environmental Law Institute, Washington, DC

    Google Scholar 

  • European Commission (EC) (2011) Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU). Off J Eur Union L275:38–40. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:EN:PDF. Accessed 22 Aug 2014

  • Fabrega J, Luoma SN, Tyler CR (2011) Silver nanoparticles: behavior and effects in the aquatic environment. Environ Int 37(2):517–531

    Article  Google Scholar 

  • Fan W, Wang X, Cui M, Zhang D, Zhang Y, Yu T, Guo L (2012) Differential oxidative stress of octahedral cubic Cu20 micro/nanocrystals to Daphnia magna. Environ Sci Technol 46(18):10255–10262

    Google Scholar 

  • Food and Drug Administration (FDA) (2012) FDA’s approach to regulation of nanotechnology products. http://www.fda.gov/ScienceResearch/SpecialTopics/Nanotechnology/ucm301114.htm. Accessed 22 Aug 2014

  • Gabbert S, Weikard H-P (2010) A theory of chemicals regulation and testing. Nat Resour Forum 34:155–164

    Article  Google Scholar 

  • Gaiser BK, Biswas A, Rosenkranz P, Jepson MA, Lead JR, Stone V, Tyler CR, Fernandes TF (2011) Effects of silver and cerium dioxide micro- and nano-sized particles on Daphnia magna. J Environ Monit 13:1227–1235

    Article  Google Scholar 

  • Garcia-Reyero N, Kennedy AJ, Escalon BL, Habib T, Laird JG, Rawat A, Wiseman S, Hecker M, Denslow N, Steevens JA, Perkins EJ (2014) Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. Environ Sci Technol 48:4546–4555

    Article  Google Scholar 

  • Ging J, Tejerina-Anton R, Ramakrishnan G, Nielsen M, Murphy K, Gorham JM, Nguyen T, Orlov A (2014) Development of a conceptual framework for evaluation of nanomaterials release from nanocomposites: environmental and toxicological implications. Sci Tot Environ 473–474:9–19

    Article  Google Scholar 

  • Gottschalk F, Nowack B (2011) The release of engineered nanomaterials to the environment. J Environ Monit 13:1145–1155

    Article  Google Scholar 

  • Grieger KD, Linkov I, Hansen SF, Baun A (2012) Environmental risk analysis for nanomaterials: review and evaluation of frameworks. Nanotoxicol 6(2):196–212

    Article  Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27:1972–1978

    Article  Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–415

    Article  Google Scholar 

  • Handy RD, Cornelis G, Fernandes T et al (2012a) Ecotoxicity test methods for engineered nanomaterials: practical experiences and recommendations from the bench. Environ Toxicol Chem 31(1):15–31

    Article  Google Scholar 

  • Handy RD, van den Brink N, Chappell M et al (2012b) Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? Ecotoxicol 21(4):933–972

    Article  Google Scholar 

  • Hansen SF, Larsen BH, Olsen SI, Baun A (2007) Categorization framework to aid hazard identification of nanomaterials. Nanotoxicol 1(3):243–250

    Article  Google Scholar 

  • Hansen SF, Michelson ES, Kamper A, Borling P, Stuer-Lauridsen F, Baun A (2008) Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 17:438–447

  • Hansen SF, Maynard A, Baun A, Tickner JA, Bowman DM (2014a) What are the warning signs that we should be looking for? In: Hull M, Bowman DM (eds) Nanotechnology risk management, 2nd edn. Elsevier, Amsterdam, pp 9–24

    Google Scholar 

  • Hansen SF, Jensen KA, Baun A (2014b) NanoRiskCat: a conceptual tool for categorization and communication of exposure potentials and hazards of nanomaterials in consumer products. J Nanopart Res. doi:10.1007/s11051-013-2195-z

    Google Scholar 

  • Harmon AR, Kennedy AJ, Poda AR, Bednar AJ, Chappell MA, Steevens JA (2014) Determination of nanosilver dissolution kinetics and toxicity in an environmentally relevant aqueous medium. Environ Toxicol Chem 33:1783–1791

    Article  Google Scholar 

  • Hartung T (2010) Food for thought on alternative methods for nanoparticle safety testing. ALTEX 27(2):87–95

    Google Scholar 

  • Hull M, Bowman D (2010) Nanotechnology environmental health and safety: risks, regulation and management. Elsevier, Oxford, UK

    Google Scholar 

  • Hull MS, Kennedy AJ, Steevens JA, Bednar AJ, Weiss CA, Vikesland PJ (2009) Release of metal impurities from carbon nanomaterials influences aquatic toxicity. Environ Sci Technol 43(11):4169–4174

    Article  Google Scholar 

  • Hull M, Kennedy AJ, Detzel C, Vikesland PJ, Chappell MA (2012) Moving beyond mass: the unmet need to consider dose metrics in environmental nanotoxicology studies. Environ Sci Technol 46:10881–10882

    Article  Google Scholar 

  • ISO (2008) Nanotechnologies terminology and definitions for nano objects—nanoparticle, nanofibre, and nanoplate. ISO/TS 27687

  • ISO (2010) Nanotechnologies—vocabulary—part 1: core terms. ISO/TS 80004-1:2010(E)

  • ISO (2011) Nanotechnologies—vocabulary—part 4: nanostructured materials. ISO/TS 80004-4:2011(E)

  • ISO (2014) Nanotechnologies—considerations for the development of chemical nomenclatures for selected nano-objects. ISO TR 14786

  • Jiang J, Oberdorster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    Article  Google Scholar 

  • Kennedy AJ, Gunter JC, Chappell MA, Goss JG, Hull MS, Kirgan RA, Steevens JA (2009) Influence of nanotube preparation in aquatic bioassays. Environ Toxicol Chem 28:1930–1938

    Article  Google Scholar 

  • Kennedy AJ, Hull MS, Bednar AJ, Goss JD, Gunter JC, Bouldin JL, Vikesland PJ, Steevens JA (2010) Fractionating nanosilver: importance for determining toxicity to aquatic test organisms. Environ Sci Technol 44:9571–9577

    Article  Google Scholar 

  • Kennedy AJ, Chappell MA, Bednar AJ, Ryan AC, Laird JG, Stanley JK, Steevens JA (2012) Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticle. Environ Sci Technol 46:10772–10780

    Article  Google Scholar 

  • Kennedy AJ, Melby ML, Moser RD, Bednar AJ, Son SF, Lounds CD, Laird JG, Nellums RR, Johnson DR, Steevens JA (2013) Fate and toxicity of CuO nanospheres and nanorods used in Al/CuO nanothermites before and after combustion. Environ Sci Technol 47(19):11258–11267

    Article  Google Scholar 

  • Kennedy AJ, Diamond S, Stanley JK, Coleman J, Steevens JA, Chappell MA, Laird JG, Bednar A (2014) Nanomaterials ecotoxicology: a case study with nanosilver. In: Hull MS, Bowman D (eds) Nanotechnology environmental health and safety: risks, regulation and management, 2nd edn. Elsevier, Amsterdam, pp 117–151

    Chapter  Google Scholar 

  • Kimbrell GA (2007) Nanotechnology and nanomaterial personal care products: necessary oversight and recommendations. In: Betton CI (ed) Global regulatory issues for the cosmetics industry. William Andrew, Norwich, NY

    Google Scholar 

  • Kittler S, Greulich C, Diedorf J, Koller M, Epple M (2010) Toxicity of silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem Mater 22:4548–4554

    Article  Google Scholar 

  • Klaine SJ, Alvarez P, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  Google Scholar 

  • Kovacs T, Naish V, O’Connor B, Blaise C, Gagne F, Hall L, Trudeau V, Martel P (2010) An ecotoxicological characterization of nanocrystalline cellulose (NCC). Nanotoxicol 4:255–270

    Article  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Chaudhry Q (2010) A complementary definition of nanomaterial. Nano Today 5(3):165–168

    Article  Google Scholar 

  • Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguex M, Bishnoi SW (2010) Comparative toxicity study of Ag, Au, Ag-Au bimetallic nanoparticles on Daphnia magna. Anal Bioanal Chem 398:689–700

    Article  Google Scholar 

  • Linkov I, Satterstrom FK, Monica JC Jr, Hansen SF, Davis TA (2009) Nano risk governance: current developments and future perspectives. Nanotechnol Law Bus 6:203–220

    Google Scholar 

  • Linkov I, Bates ME, Canis LJ, Seager TP, Keisler JM (2011) A decision-directed approach for prioritizing research into the impact of nanomaterials on the environment and human health. Nat Nanotechnol 6:784–787

    Article  Google Scholar 

  • Linkov I, Trump BD, Pabon N, Collier ZA, Keisler JM, Scriven J (2012) A decision analytic approach for Department of Defense acquisition risk management. Mil Oper Res 17(2):53–70

    Article  Google Scholar 

  • Linkov I, Bates ME, Trump BD, Seager TP, Chappell MA, Keisler JM (2013) For nanotechnology decisions, use decision analysis. Nano Today 8:5–10

    Article  Google Scholar 

  • Linkov I, Anklam E, Collier ZA, DiMase D, Renn O (2014) Risk-based standards: integrating top-down and bottom-up approaches. Environ Sys Decis 34(1):134–137

    Article  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44:2169–2175

    Article  Google Scholar 

  • Lövestam G, Rauscher H, Roebben G, Klüttgen BS, Gibson N, Putaud J-P, Stamm H (2010) Considerations on a definition of nanomaterial for regulatory purposes. EUR 24403 EN

  • Ma H, Brennan A, Diamond SA (2012) Phototoxicity of TiO2 nanoparticle under solar radiation to two aquatic species: Daphnia magna and Japanese Medaka. Environ Toxicol Chem 31:1621–1629

    Article  Google Scholar 

  • MacCuspie RI (2014) Characterization of nanomaterials for nanoEHS studies. In: Hull MS, Bowman D (eds) Nanotechnology environmental health and safety: risks, regulation and management, 2nd edn. Elsevier, Amsterdam, pp 55–76

    Chapter  Google Scholar 

  • MacCuspie RI, Rogers K, Patra M, Suo Z, Allen AJ, Martin MN, Hackley VA (2014) Challenges for physical characterization of silver nanoparticles under pristine and environmentally relevant conditions. J Environ Monit 13:1212–1226

    Article  Google Scholar 

  • Metcalfe C, Bennett E, Chappell M, Depledge M, Goss G, Goudey S, Kaczmar S, Obrien N, Picado A, Ramadan AB, Steevens J (2009) SMARTEN: strategic management and assessment of risks and toxicity of engineered nanomaterials. In: Linkov I, Steevens J (eds) Nanomaterials: risks and benefits. Springer, Amsterdam, pp 95–109

    Chapter  Google Scholar 

  • Mitchell J, Pabon N, Collier ZA, Egeghy PP, Cohen-Hubal E, Linkov I, Vallero DA (2013) A decision analytic approach to exposure-based chemical prioritization. PLoS ONE 8(8):e70911

    Article  Google Scholar 

  • Mohan M, Trump BD, Bates ME, Monica JC Jr, Linkov I (2012) Integrating legal liabilities in nanomanufacturing risk management. Environ Sci Technol 46:7955–7962

    Article  Google Scholar 

  • National Institute for Occupational Safety and Health (NIOSH) (2013) Current strategies for engineering controls in nanomaterial production and downstream handling processes. http://www.cdc.gov/niosh/docs/2014-102/pdfs/2014-102.pdf. Accessed 22 Aug 2014

  • National Nanotechnology Initiative (NNI) (2007) National nanotechnology initiative strategic plan. http://www.nano.gov/NNIStrategicPlan2007.pdf. Accessed 22 Aug 2014

  • National Nanotechnology Initiative (NNI) (2011) Environmental, health, and safety research strategy. National Science and Technology Council, Washington, DC. http://www.nano.gov/sites/default/files/pub_resource/nni_2011_ehs_research_strategy.pdf. Accessed 22 Aug 2014

  • National Research Council (NRC) (2013) Research progress on environmental, health, and safety aspects of engineered nanomaterials. National Academic, Washington, DC

    Google Scholar 

  • Notter DA, Mitrano DM, Nowack B (2014) Are nanosized of dissolved metals more toxic in the environment? A meta-analysis. Environ Toxicol Chem (in press)

  • Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  • Oberdorster E, Zhu SQ, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C-60) on aquatic organisms. Carbon 44:1112–1120

    Article  Google Scholar 

  • Oberdorster G, Stone V, Donaldson K (2007) Toxicology of nanoparticles: a historical perspective. Nanotoxicol 1:2–25

    Article  Google Scholar 

  • Office of Management and Budget (OMB) (2010) Nanoscale Materials; Reporting Under TSCA Section 8(a). RIN 2070-AJ54. Office of Information and Regulatory Affairs, Office of Management and Budget, Washington, DC. http://www.reginfo.gov/public/do/eAgendaViewRule?pubId=201010&RIN=2070-AJ54. Accessed 22 Aug 2014

  • Olson MS, Gurian PL (2012) Risk assessment strategies as nanomaterials transition into commercial applications. J Nanopart Res 14:786–792

    Article  Google Scholar 

  • Oomen AG, Bos PMJ, Fernandes TF et al (2014) Concern-driven integrated approaches to nanomaterial testing and assessment—report of the NanoSafety Cluster Working Group 10. Nanotoxicol 8(3):334–348

    Article  Google Scholar 

  • Organization of Economic Cooperation and Development (OECD) (2012) Guidance on sample preparation and dosimetry for the safety testing of manufactured nanomaterials. Series on the safety of manufactured nanomaterials, No. 36 ENV/JM/MONO(2012)40

  • Osborne O, Johnson B, Moger J, Balousha M, Lead JR, Kudoh T, Tyler CR (2012) Effects of particle size and coating on nanoscale Ag and TiO2 exposure in zebrafish (Danio rerio) embryos. Nanotoxicol 7(8):1315–1324

    Article  Google Scholar 

  • Petersen EJ, Zhang L, Mattison NT, O’Carrol DM, Whelton AJ, Uddin N, Nguyen T, Huang Q, Henry TB, Holbrook RD, Chen KC (2013) Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ Sci Technol 45:9837–9856

    Article  Google Scholar 

  • Petersen EJ, Henry TB, Zhao J, MacCuspie RI, Kirschling TL, Dobrovolskaia MA, Hackley V, Xing B, White JC (2014) Identification and avoidance of potential artifacts and misinterpretations in nanomaterial ecotoxicity measurements. Environ Sci Technol 48:4226–4246

    Article  Google Scholar 

  • Pettitt ME, Lead JR (2013) Minimum physicochemical characterization requirements for nanomaterial regulation. Environ Int 52:41–50

    Article  Google Scholar 

  • Poda AR, Bednar AJ, Kennedy AJ, Harmon A, Hull M, Mitrano DM, Ranville JF, Steevens J (2011) Characterization of silver nanoparticles using flow–field flow fractionation interfaces to inductively coupled plasma spectrometry. J Chromatogr A 1218(27):4219–4225

    Article  Google Scholar 

  • Pokropivny VV, Skorokhod VV (2007) Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science. Mater Sci Eng C 27:990–993

    Article  Google Scholar 

  • Rabolli V, Thomassen LCJ, Uwambayinema F, Martens JA, Lison D (2011) The cytotoxic activity of amorphous silica nanoparticle is mainly influenced by surface area not by aggregation. Toxicol Lett 206:197–203

    Article  Google Scholar 

  • Roco MC, Bainbridge WS (2005) Societal implications of nanoscience and nanotechnology: maximizing human benefit. J Nanopart Res 7:1–13

    Article  Google Scholar 

  • Romer I, White TA, Baalousha M, Chipman K, Viant MR, Lead JR (2011) Aggregation and dispersion of silver nanopartciles in exposure media for aquatic toxicity tests. J Chromatogr A 1218:4226–4233

    Article  Google Scholar 

  • SCENIHR (Scientific Committee on Emerging and Newly Identified Health Risks) (2010) Opinion on the scientific basis for the definition of the term “nanomaterial”, 8 December 2010. http://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_032.pdf. Accessed 22 Aug 2014

  • Sotiriou GA, Pratsinis SE (2010) Antibacterial activity of nanosilver ions and particles. Environ Sci Technol 44:5649–5654

    Article  Google Scholar 

  • Steevens JA, Bednar A, Chappell M, Donohue K, Ginsberg M, Guy K, Johnson D, Kennedy A, Moser R, Page M, Poda A, Weiss C (2012) Comprehensive environmental assessment of nanotechnologies: a case study using self decontaminating surface materials. In: Puzyn T, Leszczynski J (eds) Towards efficient designing of safe nanomaterials. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Tervonen T, Linkov I, Figueira JR, Steevens J, Chappell M, Merad M (2009) Risk-based classification system of nanomaterials. J Nanopart Res 11:757–766

    Article  Google Scholar 

  • Theis TL, Bakshi BR, Durham D, Fthenakis VM, Gutowski TG, Isaacs JA, Seager T, Wiesner MR (2011) A life cycle framework for the investigation of environmentally benign nanoparticles and products. Phys Status Solidi Rapid Res Lett 5(9):312–317

    Article  Google Scholar 

  • Tolaymat TM (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Tot Environ 408:999–1006

    Article  Google Scholar 

  • Tsai SJ, Hofman M, Hallock M, Ada E, Kong J, Ellenbecker M (2009) Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. Environ Sci Technol 43(15):6017–6023

    Article  Google Scholar 

  • TSCA (2002) http://www.epw.senate.gov/tsca.pdf

  • US Environmental Protection Agency (EPA) (2002) Methods for Measuring the Acute Toxicity of Effluents and Receiving Waters to Freshwater and Marine Organisms. EPA-821-R-02-012, 4th edn. Office of Water, Washington, DC

    Google Scholar 

  • US Environmental Protection Agency (EPA) (2007) TSCA inventory status of nanoscale substances—general approach. http://www.epa.gov/oppt/nano/nmsp-inventorypaper.pdf. Accessed 22 Aug 2014

  • US Environmental Protection Agency (EPA) (2008) Toxic substances control act inventory status of carbon nanotubes. Federal Register vol 73, Num. 212 http://www.gpo.gov/fdsys/pkg/FR-2008-10-31/html/E8-26026.htm. Accessed 22 Aug 2014

  • US Environmental Protection Agency (EPA) (2010) Control of nanoscale materials under the toxic substances control act. http://www.epa.gov/oppt/nano/#existingmaterials. Accessed 22 Aug 2014

  • US Environmental Protection Agency (EPA) (2012) Emerging contaminant—nanomaterials. http://www.epa.gov/fedfac/pdf/emerging_contaminants_nanomaterials.pdf. Accessed 22 Aug 2014

  • US Environmental Protection Agency (EPA)—Army Corps of Engineers (USACE) (1991) Evaluation of dredged material proposed for ocean disposal (ocean testing manual). EPA 503/8–91/001. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • US Environmental Protection Agency (EPA)—Army Corps of Engineers (USACE) (1998) Evaluation of material proposed for discharge to waters of the US—testing manual (inland testing manual). EPA/823/B-98/004. US Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Vasudevan R, Kennedy AJ, Merritt M, Crocker FH, Baney RH (2014) Microscale patterned surfaces reduce bacterial fouling—microscopic and theoretical analysis. Colloid Surf B 117:225–232

    Article  Google Scholar 

  • Wender BA, Foley RW, Guston DH, Seager TP, Wiek A (2013) Anticipatory governance and anticipatory life cycle assessment of single wall carbon nanotube anode lithium ion batteries. Nanotechnol Law Bus 9:201–216

    Google Scholar 

  • Westerhoff P, Song G, Hristovski K, Kiser MA (2011) Occurrence and removal of titanium at full scale wastewater treatment plants: implications for TiO2 nanomaterials. J Environ Monit 13:1195–1203

    Article  Google Scholar 

  • Wohlleben W, Brill S, Meier MW, Mertler M, Cox G, Hirth S, von Vacano B, Strauss V, Treumann S, Wiench K, Ma-Hock L, Landsiedel R (2011) On the lifecycle of nanocomposites: comparing released fragments and their in vivo hazards from three release mechanisms and four nanocomposites. Small 7:2384–2395

    Article  Google Scholar 

  • Xiu ZM, Ma M, Alvarez JJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008

    Article  Google Scholar 

  • Yokota F, Gray G, Hammitt JK, Thompson KM (2004) Tiered chemical testing: a value of information approach. Risk Anal 24(6):1625–1639

    Article  Google Scholar 

  • Zalk D, Nelson D (2006) History and evolution of control banding: a review. UCRL-JRNL-223247. Lawrence Livermore National Laboratory, Livermore, CA

    Google Scholar 

  • Zook JM, Rastogi V, MacCuspie RI, Keene AM, Fagan J (2011) Measuring agglomerate size distribution and dependence of localized surface plasmon resonance absorbance on gold nanoparticle agglomerate size using analytical ultracentrifugation. ACS Nano 5:8070–8079

    Article  Google Scholar 

Download references

Acknowledgments

Permission was granted by the US Army Corps of Engineers, Chief of Engineers to publish this material. The views expressed in this article are solely those of the authors and do not reflect the official policies or positions of the Department of Army, the Department of Defense, or any other department or agency of the U.S. government. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This work was funded through the Army Environmental Quality and Installations (EQI) Technology Research Program (Dr. Elizabeth Ferguson, Technical Director) for the U.S Army Engineer Research and Development Center (ERDC).

Conflict of interest

The authors report no conflicts of interest (financial or non-financial) relative to the submitted materials.

Compliance with ethical standards

No animal testing was directly conducted as part of this work; toxicological values were from the cited literature. The work was funded internally within the Army, as stated in the acknowledgments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Kennedy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collier, Z.A., Kennedy, A.J., Poda, A.R. et al. Tiered guidance for risk-informed environmental health and safety testing of nanotechnologies. J Nanopart Res 17, 155 (2015). https://doi.org/10.1007/s11051-015-2943-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-2943-3

Keywords

Navigation