Skip to main content
Log in

Chemical approach to solvent removal during nanoencapsulation: its application to preparation of PLGA nanoparticles with non-halogenated solvent

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The objective of this study was to develop a new oil-in-water emulsion-based nanoencapsulation method for the preparation of PLGA nanoparticles using a non-halogenated solvent. PLGA (60–150 mg) was dissolved in 3 ml of methyl propionate, which was vortexed with 4 ml of a 0.5–4 % polyvinyl alcohol solution. This premix was sonicated for 2 min, added into 30 ml of the aqueous polyvinyl alcohol solution, and reacted with 3 ml of 10 N NaOH. Solvent removal was achieved by the alkaline hydrolysis of methyl propionate dissolved in an aqueous phase into water-soluble methanol and sodium propionate. It was a simple but effective technique to quickly harden nanoemulsion droplets into nanoparticles. The appearing PLGA nanoparticles were recovered by ultracentrifugation and/or dialysis, lyophilized with trehalose, and redispersed by water. This nanoencapsulation technique permitted a control of their mean diameters over 151.7 ± 3.8 to 440.2 ± 22.2 nm at mild processing conditions. When the aqueous polyvinyl alcohol concentration was set at ≥1 %, nanoparticles showed uniform distributions with polydispersity indices below 0.1. There were no significant changes in their mean diameters and size distribution patterns before and after lyophilization. When mestranol was encapsulated into nanoparticles, the drug was completely nanoencapsulated: depending on experimental conditions, their encapsulation efficiencies were determined to be 99.4 ± 7.2 to 105.8 ± 6.3 %. This simple, facile nanoencapsulation technique might have versatile applications for the preparation of polymeric nanoparticulate dosage forms.

Graphical Abstract

Schematic illustration of an innovative chemical approach to solvent removal during nanoencapsulation. Methyl propionate present in the aqueous continuous phase reacts with sodium hydroxide, thereby producing methanol and sodium propionate. Its alkaline hydrolysis allows the continuous extraction of the solvent out of nanoemulsion droplets, eventually solidifying them into nanoparticles. It is a simple but effective nanoencapsulation technique that has advantages over typical solvent evaporation and/or extraction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alonso-Sande M, des Rieux A, Fievez V, Sarmento B, Delgado A, Evora C, Remuñán-López C, Préat V, Alonso MJ (2013) Development of PLGA-mannosamine nanoparticles as oral protein carriers. Biomacromolecules 14:4046–4052

    Article  Google Scholar 

  • Bala I, Hariharan S, Kumar MN (2004) PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 21:387–422

    Article  Google Scholar 

  • Beck-Broichsitter M, Rytting E, Lebhardt T, Wang X, Kissel T (2010) Preparation of nanoparticles by solvent displacement for drug delivery: a shift in the “ouzo region” upon drug loading. Eur J Pharm Sci 41:244–253

    Article  Google Scholar 

  • Birnbaum DT, Kosmala JD, Brannon-Peppas L (2000) Optimization of preparation techniques for poly(lactic acid-co-glycolic acid). J Nanopart Res 2:173–181

    Article  Google Scholar 

  • Boonyasirisri P, Nimmannit U, Rojsitthisak P, Bhunchu S, Rojsitthisak P (2015) Optimization of curcuminoid-loaded PLGA nanoparticles using Box-Behnken statistical design. J Nano Res 33:60–71

    Article  Google Scholar 

  • Budhian A, Siegel SJ, Winey KI (2005) Production of haloperidol-loaded PLGA nanoparticles for extended controlled drug release of haloperidol. J Microencapsul 22:773–785

    Article  Google Scholar 

  • Chowdhury S, Guha R, Trivedi R, Kompella UB, Konar A, Hazra S (2013) Pirfenidone nanoparticles improve corneal wound healing and prevent scarring following alkali burn. PLoS ONE 8:e70528

    Article  Google Scholar 

  • Cohen H, Levy RJ, Gao J, Fishbein I, Kousaev V, Sosnowski S, Slomkowski S, Golomb G (2000) Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther 7:1896–1905

    Article  Google Scholar 

  • Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G (2009) A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 133:90–95

    Article  Google Scholar 

  • Cun D, Foged C, Yang M, Frøkjaer S, Nielsen HM (2010) Preparation and characterization of poly(DL-lactide-co-glycolide) nanoparticles for siRNA delivery. Int J Pharm 390:70–75

    Article  Google Scholar 

  • Dalwadi G, Benson HAE, Chen Y (2005) Comparison of diafiltration and tangential flow filtration for purification of nanoparticle suspensions. Pharm Res 22:2152–2162

    Article  Google Scholar 

  • Danhier F, Ansorena E, Silva JM, Coco R, Breton Le, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522

    Article  Google Scholar 

  • Ganachaud F, Katz JL (2005) Nanoparticles and nanocapsules created using the ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices. ChemPhysChem 6:209–216

    Article  Google Scholar 

  • Ganea GM, Fakayode SO, Losso JN, van Nostrum CF, Sabliov CM, Warner IM (2010) Delivery of phytochemical thymoquinone using molecular micelle modified poly(d, l-lactide-co-glycolide) (PLGA) nanoparticles. Nanotechnology 21:285104. doi:10.1088/0957-4484/21/28/285104

    Article  Google Scholar 

  • Godsey ME, Suryaprakash S, Leong KW (2013) Materials innovation for co-delivery of diverse therapeutic cargos. RSC Adv 3:24794–24811

    Article  Google Scholar 

  • Hoang TKN, Deriemaeker L, La VB, Fins R (2004) Monitoring the simultaneous Ostwald ripening and solubilization of emulsions. Langmuir 20:8966–8969

    Article  Google Scholar 

  • Im HY, Kim J, Sah H (2010) Another paradigm in solvent extraction-based microencapsulation technologies. Biomacromolecules 11:776–786

    Article  Google Scholar 

  • Jung T, Breitenbach A, Kissel T (2000) Sulfobutylated poly(vinyl alcohol)-graft-poly(lactide-co-glycolide) facilitates the preparation of small negatively charged biodegradable nanospheres. J Control Release 67:157–169

    Article  Google Scholar 

  • Kalluru R, Fenaroli F, Westmoreland D, Ulanova L, Maleki A, Roos N, Paulsen Madsen M, Koster G, Egge-Jacobsen W, Wilson S, Roberg-Larsen H, Khuller GK, Singh A, Nyström B, Griffiths G (2013) Poly(lactide-co-glycolide)-rifampicin nanoparticles efficiently clear Mycobacterium bovis BCG infection in macrophages and remain membrane-bound in phago-lysosomes. J Cell Sci 126:3043–3054

    Article  Google Scholar 

  • Kang J, Sah E, Sah H (2014) Applicability of non-halogenated methyl propionate to microencapsulation. J Microencapsul 31:323–332

    Article  Google Scholar 

  • Kapoor DN, Bhatia A, Kaur R, Sharma R, Kaur G, Dhawan S (2015) PLGA: a unique polymer for drug delivery. Ther Deliv 6:41–58

    Article  Google Scholar 

  • Khalil NM, do Nascimento TCF, Casa DM, Dalmolin LF, de Mattos AC, Hoss I, Romano MA, Mainardes RM (2013) Pharmacokinetics of curcumin-loaded PLGA and PLGA–PEG blend nanoparticles after oral administration in rats. Colloid Surface B 101:353–360

    Article  Google Scholar 

  • Kim TH, Jeng YI, Jin SG, Pei J, Jung TY, Moon KS, Kim IY, Kang SS, Jung S (2011) Preparation of polylactide-co-glycolide nanoparticles incorporating celecoxib and their antitumor activity against brain tumor cells. Int J Nanomedicine 6:2621–2631

    Article  Google Scholar 

  • Kumar V, Prud’homme RK (2009) Nanoparticle stability: processing pathways for solvent removal. Chem Eng Sci 64:1358–1361

    Article  Google Scholar 

  • Lamprecht A, Ubrich N, Yamamoto H, Schafer U, Takeuchi H, Lehr CM, Maincent P, Kawashima Y (2001) Design of rolipram-loaded nanoparticles: comparison of two preparation methods. J Control Release 71:297–306

    Article  Google Scholar 

  • Lepeltier E, Bourgaux C, Couvreur P (2014) Nanoprecipitation and the “Ouzo effect”: application to drug delivery devices. Adv Drug Deliv Rev 71:86–97

    Article  Google Scholar 

  • Limayen I, Charcosset C, Fessi H (2004) Purification of nanoparticle suspensions by a concentration/diafiltration process. Sep Purif Technol 38:1–9

    Article  Google Scholar 

  • Mahajan NM, Sakarkar DM, Manmode AS (2011) Preparation and characterization of meselamine loaded PLGA nanoparticles. Int J Pharm Pharm Sci 3:208–214

    Google Scholar 

  • Mainardes RM, Evangelista RC (2005) PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. Int J Pharm 290:137–144

    Article  Google Scholar 

  • Mariano RN, Alberti D, Cutrin JC, Geninatti Crich S, Aime S (2014) Design of PLGA based nanoparticles for imaging guided applications. Mol Pharm 11:4100–4106

    Article  Google Scholar 

  • Matthäus C, Schubert S, Schmitt M, Krafft C, Kietzek B, Schubert US, Popp J (2013) Resonance raman spectral imaging of intracellular uptake of β-carotene loaded poly(d, l-lactide-co-glycolide. ChemPhysChem 14:155–161

    Article  Google Scholar 

  • McCall RL, Sirianni RW (2013) PLGA nanoparticles formed by single- or double-emulsion with vitamin E-TPGS. J Vis Exp 82:e51015. doi:10.3791/51015

    Google Scholar 

  • Moinard-Checot M, Chevalier Y, Briancon S, Beney L, Fessi H (2008) Mechanism of nanocapsules formation by the emulsion–diffusion process. J Colloid Interface Sci 317:458–468

    Article  Google Scholar 

  • Mott B, Thamake S, Vishwanatha J, Jones HP (2013) Intranasal delivery of nanoparticle-based vaccine increases protection against S. pneumonia. J Nanopart Res 15:1646. doi:10.1007/s1105-013-1646-x

    Article  Google Scholar 

  • Mu L, Feng S (2003) A novel controlled release formulation for the anticancer drug paclitaxel (Taxol): PLGA nanoparticles containing vitamin E TPGS. J Control Release 86:33–48

    Article  Google Scholar 

  • Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, Tsapis N, Fattal E (2011) Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomedicine 6:2591–2605

    Google Scholar 

  • Murakami H, Kobayashi M, Takeuchi H, Kawashima Y (1999) Preparation of poly(dl-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method. Int J Pharm 187:143–152

    Article  Google Scholar 

  • Nahar M, Jain NK (2009) Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm Res 26:2588–2598

    Article  Google Scholar 

  • Peça IN, Petrova KT, Cardoso MM, Barros MT (2012) Preparation and characterization of polymeric nanoparticles composed of poly(dl-lactide-co-glycolide) and poly(dl-lactide-co-glycolide)-co-poly(ethylene glycol)-10%-Triblock end-capped with a galactose moiety. React Funct Polym 72:729–735

    Article  Google Scholar 

  • Pillai RR, Somayaji SN, Rabinovich M, Hudson MC, Gonsalves KE (2008) Nafcillin-loaded PLGA nanoparticles for treatment of osteomyelitis. Biomed Mater 3:034114. doi:10.1088/1748-6041/3/3/034114

    Article  Google Scholar 

  • Rescignano N, Tarpani L, Tiribuzi R, Montesano S, Martino S, Latterini L, Kenny JM, Armentano I (2013) Protein encapsulation in biodegradable polymeric nanoparticles: morphology, fluorescence behaviour and stem cell uptake. Macromol Biosci 13:1204–1212

    Article  Google Scholar 

  • Sah E, Sah H (2015) Recent trends in preparation of poly(lactide-co-glycolide) nanoparticles by mixing polymeric organic solution with antisolvent. J Nanomater, article ID 794601

  • Sahoo KS, Panyam J, Prabha S, Labhasetwar V (2002) Residual polyvinyl alcohol associated with poly (d, l-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J Control Release 82:105–114

    Article  Google Scholar 

  • Swaminathan SK, Roger E, Toti U, Niu L, Ohlfest JR, Panyam J (2013) CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer. J Control Release 171:280–287

    Article  Google Scholar 

  • Tansik G, Yakar A, Gunduz U (2014) Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery. J Nanopart Res 16:2171. doi:10.1007/s11051-013-2171-7

    Article  Google Scholar 

  • Turk CTS, Oz UC, Serim TM, Hascicek C (2014) Formulation and optimization of nonionic surfactants emulsified nimesulide-loaded PLGA-based nanoparticles by design of experiments. AAPS PharmSciTech 15:161–176

    Article  Google Scholar 

  • Vandervoort J, Ludwig A (2002) Biocompatible stabilizers in the preparation of PLGA nanoparticles: a factorial design study. Int J Pharm 238:77–92

    Article  Google Scholar 

  • Venier-Julienne MC, Benoît JP (1996) Preparation, purification and morphology of polymeric nanoparticles as drug carriers. Pharm Acta Helv 71:121–128

    Article  Google Scholar 

  • Vitale SA, Katz JL (2003) Liquid droplet dispersions formed by homogeneous liquid-liquid nucleation: “The ouzo effect”. Langmuir 19:4105–4110

    Article  Google Scholar 

  • Xie H, She ZG, Wang S, Sharma G, Smith JW (2012) One-step fabrication of polymeric Janus nanoparticles for drug delivery. Langmuir 28:4459–4463

    Article  Google Scholar 

  • Yin P, Wang Y, Qui Y, Hou L, Liu X, Qin J, Duan Y, Liu P, Qiu M, Li Q (2012) Bufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles: preparation, cellular uptake, tissue distribution, and anticancer activity. Int J Nanomedicine 7:3961–3969

    Google Scholar 

  • Yoo HS, Lee KH, Oh JE, Park TG (2000) In vitro and in vivo anti-tumor activities of nanoparticles based on doxorubicin–PLGA conjugates. J Control Release 68:419–431

    Article  Google Scholar 

  • Zhang Z, Tongchusak S, Mizukami Y, Kang YJ, Ioji T, Touma M, Reinhold B, Keskin DB, Reinherz EL, Sasada T (2011) Induction of anti-tumor cytotoxic T cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials 32:3666–3678

    Article  Google Scholar 

  • Zigoneanu IG, Astete CE, Sabliov CM (2008) Nanoparticles with entrapped α-tocopherol: synthesis, characterization, and controlled release. Nanotechnology 19:105606. doi:10.1088/0957-4484/19/10/105606

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Korea SGER Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2014R1A1A2A16054899).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkee Sah.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Sah, E. & Sah, H. Chemical approach to solvent removal during nanoencapsulation: its application to preparation of PLGA nanoparticles with non-halogenated solvent. J Nanopart Res 17, 453 (2015). https://doi.org/10.1007/s11051-015-3262-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3262-4

Keywords

Navigation