Skip to main content
Log in

Bottom-up strategies for the assembling of magnetic systems using nanoclusters

  • Review
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In the frame of the 20th Anniversary of the Journal of Nanoparticle Research (JNR), our aim is to start from the historical context 20 years ago and to give some recent results and perspectives concerning nanomagnets prepared from clusters preformed in the gas phase using the low-energy cluster beam deposition (LECBD) technique. In this paper, we focus our attention on the typical case of Co clusters embedded in various matrices to study interface magnetic anisotropy and magnetic interactions as a function of volume concentrations, and on still current and perspectives through two examples of binary metallic 3d-5d TM (namely CoPt and FeAu) cluster assemblies to illustrate size-related and nanoalloy phenomena on magnetic properties in well-defined mass-selected clusters. The structural and magnetic properties of these cluster assemblies were investigated using various experimental techniques that include high-resolution transmission electron microscopy (HRTEM), superconducting quantum interference device (SQUID) magnetometry, and synchrotron techniques such as extended X-ray absorption fine structure (EXAFS) and X-ray magnetic circular dichroism (XMCD). Depending on the chemical nature of both NPs and matrix, we observe different magnetic responses compared to their bulk counterparts. In particular, we show how finite size effects (size reduction) enhance their magnetic moment and how specific relaxation in nanoalloys can impact their magnetic anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Allia P, Knobel M, Tiberto P, Vinai F (1995) Magnetic properties and giant magnetoresistance of melt-spun granular Cu100-x–Cox alloys. Phys Rev B 52:15398

    Article  Google Scholar 

  • Andersson JO, Djurberg C, Jonsson T, Svedlindh P, Nordblad P (1997) Monte Carlo studies of the dynamics of an interacting monodispersive magnetic-particle system. Phys Rev B 56:13983

    Article  Google Scholar 

  • Andreazza P, Pierron-Bohnes V, Tournus F, Andreazza-Vignolle C, Dupuis V (2015) Structure and order in cobalt/platinum-type nanoalloys: from thin films to supported clusters. Surf Sci Rep 70:188–258

    Article  Google Scholar 

  • Ban Z, Barnakov YA, Li F, Golub VO, O'Connor CJ (2005) The synthesis of core–shell iron@gold nanoparticles and their characterization. J Mater Chem 15:4660

    Article  Google Scholar 

  • Bansmann J, Baker SH, Binns C, Blackman JA, Bucher JP, Dorantes-Dávila J, Dupuis V, Favre L, Kechrakos D, Kleibert A, Meiwes-Broer KH, Pastor GM, Perez A, Toulemonde O, Trohidou KN, Tuaillon J, Xie Y (2005) Magnetic and structural properties of isolated and assembled clusters. Surf Sci Rep 56:189–275

    Article  Google Scholar 

  • Blanc N, Diaz-Sanchez LE, Ramos AY, Tournus F, Tolentino HCN, De Santis M, Proux O, Tamion A, Tuaillon-Combes J, Bardotti L, Boisron O, Pastor GM, Dupuis V (2013) Element-specific quantitative determination of the local atomic order in CoPt alloy nanoparticles: experiment and theory. Phys Rev B 87:155412

    Article  Google Scholar 

  • Billas I, Becker JA, Châtelain A, de Heer WA (1993) Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature. Phys Rev Lett 71:4067–4070

    Article  Google Scholar 

  • Binns (ed) (2013) Nanomagnetism: fundamentals and applications (Elsevier, Frontiers of Nanoscience Vol 6)

  • Bucher JP, Douglass DC, Bloomfield LA (1991) Magnetic properties of free cobalt clusters. Phys Rev Lett 66:3052–3055

    Article  Google Scholar 

  • Calvo F. (ed) (2013) Nanoalloys—from fundamentals to emergent applications, published by Elsevier

  • Carra P, Thole BT, Altarelli M, Wang X (1993) X-ray circular dichroism and local magnetic fields. Phys Rev Lett 70:694–697

    Article  Google Scholar 

  • Carrey J, Mehdaoui B, Respaud M (2011) Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: application to magnetic hyperthermia optimization. J Appl Phys 109:083921

    Article  Google Scholar 

  • Chappert C, Fert A, Van Dau FN (2007) The emergence of spin electronics in data storage. Nat Mater 6:813–823

    Article  Google Scholar 

  • Cherifi RO, Ivanovskaya V, Phillips LC, Zobelli A, Infante IC, Jacquet E, Garcia V, Fusil S, Briddon PR, Guiblin N, Mougin A, Ünal AA, Kronast F, Valencia S, Dkhil B, Barthélémy A, Bibes M (2014) Electric-field control of magnetic order above room temperature. Nat Mater 13:345–351

    Article  Google Scholar 

  • Connord V, Clerc P, Hallali N, El Hajj Diab D, Fourmy D, Gigoux V, Carrey J (2015) Real-time analysis of magnetic hyperthermia experiments on living cells under a confocal microscope. Small 11:2437–2445

    Article  Google Scholar 

  • Cox AJ, Louderback JG, Bloomfield LA (1993) Experimental observation of magnetism in rhodium clusters. Phys Rev Lett 71:923–926

    Article  Google Scholar 

  • Cox DM, Trevor DJ, Whetten RL, Rohlfing EA, Kaldor A (1985) Magnetic behavior of free-iron and iron oxide clusters. Phys Rev B 32:7290–7298

    Article  Google Scholar 

  • De Heer WA, Milani P, Chatelain A (1990) Spin relaxation in small free iron clusters. Phys Rev Lett 65:488–491

    Article  Google Scholar 

  • Dobrynin AN, Ievlev DN, Temst K, Lievens P, Margueritat J, Gonzalo J, Afonso CN, Zhou SQ, Vantomme A, Piscopiello E, Van Tendeloo G (2005) Critical size for exchange bias in ferromagnetic-antiferromagnetic particles. Appl Phys Lett 87(12501):012501

    Article  Google Scholar 

  • Dupuis V, Tuaillon J, Prevel B, Perez A, Melinon P, Guiraud G, Parent F, Steren LB, Morel R, Barthelemy A, Fert A, Mangin S, Thomas L, Wernsdorfer W, Barbara B (1997) From superparamagnetic to magnetically ordered state in systems of transition metal clusters embedded in matrices. J Mag Mag Mat 165:42–45

    Article  Google Scholar 

  • Dupuis V, Blanc N, Diaz-Sanchez LE, Hillion A, Tamion A, Tournus F, Pastor GM, Rogalev A, Wilhelm F (2013) Finite size effects on structure and magnetism in mass-selected CoPt nanoparticles. Eur Phys J D 67:25

    Article  Google Scholar 

  • Dupuis V, Khadra G, Linas S, Hillion A, Gragnaniello L, Tamion A, Tuaillon-Combes J, Bardotti L, Tournus F, Otero E, Ohresser P, Rogalev A, Wilhelm F (2015a) Magnetic moments in chemically ordered mass-selected CoPt and FePt clusters. J Mag Mag Mat 383:73–77

    Article  Google Scholar 

  • Dupuis V, Khadra G, Hillion A, Tamion A, Tuaillon-Combes J, Bardotti L, Tournus F (2015b) Intrinsic magnetic properties of bimetallic nanoparticles elaborated by cluster beam deposition. Phys Chem Chem Phys 17:27996

    Article  Google Scholar 

  • Edmonds KW, Binns C, Baker SH, Thornton SC, Norris C, Goedkoop JB, Finazzi M, Brookes NB (1999) Doubling of the orbital magnetic moment in nanoscale Fe clusters. Phys Rev B 60:472–476

    Article  Google Scholar 

  • Garibay-Alonso R, Dorantes-Davila J, Pastor GM (2009) Electronic spin fluctuation theory of finite-temperature cluster magnetism: size and environment dependence in Fe N. Phys Rev B 79(134401)

  • Gijs MAM, Lacharme F, Lehmann U (2010) Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem Rev 110:1518–1563

    Article  Google Scholar 

  • Gleich B, Weizenecker J (2005) Tomographic imaging using the nonlinear response of magnetic particles. Nature 435:1214–1217

    Article  Google Scholar 

  • Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A (2015) Magnetic nanoparticles in cancer theranostics. Theranostics 5:1249

    Article  Google Scholar 

  • Haberland H, Insepov Z, Moseler M (1995) Molecular-dynamics simulation of thin-film growth by energetic cluster impact. Phys Rev B 51:11061

    Article  Google Scholar 

  • Hong J-I, Leo T, Smith DJ, Berkowitz AE (2006) Enhancing exchange bias with diluted antiferromagnets. Phys Rev Lett 96(117204)

  • Hillion A, Tamion A, Tournus F, Gaier O, Bonet E, Albin C, Dupuis V (2013) Advanced magnetic anisotropy determination through isothermal remanent magnetization of nanoparticles. Phys Rev B 88:094419

    Article  Google Scholar 

  • Hillion A, Cavallin A, Vlaic S, Tamion A, Tournus F, Khadra G, Dreiser J, Piamonteze C, Nolting F, Rusponi S, Sato K, Konno TJ, Proux O, Dupuis V, Brune H (2013b) Low temperature ferromagnetism in chemically ordered FeRh nanocrystals. Phys Rev Lett 110:087207

    Article  Google Scholar 

  • Hillion A, Tamion A, Tournus F, Albin C, Dupuis V (2017) From vanishing interaction to superferromagnetic dimerization: experimental determination of interaction lengths for embedded Co clusters. Phys Rev B 95:134446

    Article  Google Scholar 

  • Jamet M, Wernsdorfer W, Thirion C, Mailly D, Dupuis V, Mélinon P, Pérez A (2001) Magnetic anisotropy of a single cobalt nanocluster. Phys Rev Lett 86:4676–4679

    Article  Google Scholar 

  • Jensen P (1999) Growth of nanostructures by cluster deposition: experiments and simple models. Rev Mod Phys 71:1695–1735

    Article  Google Scholar 

  • Le Roy D, Morel R, Pouget S, Brenac A, Notin L, Crozes T, Wernsdorfer W (2011) Bistable coupling states measured on single Co nanoclusters deposited on CoO(111). Phys Rev Lett 107:057204

    Article  Google Scholar 

  • Linas S, Jean F, Tao Z, Albin C, Renaud G, Bardotti L, Tournus F (2015) Moire induced organization of size-selected Pt clusters soft landed on epitaxial graphene. Sci Rep 5:13053

    Article  Google Scholar 

  • Linderoth S, Khanna SN (1992) Superparamagnetic behaviour of ferromagnetic transition metal clusters. J Mag Mag Mat 104–107:1574–1576

  • Maksymov IS (2016) Magneto-plasmonic nanoantennas: basics and applications. Rev Phys 1:36–51

    Article  Google Scholar 

  • Milani P, Iannota S (eds) (1999) Cluster beam synthesis of nanostructured materials. Springer, Berlin

    Google Scholar 

  • Milani P, de Heer WA (1990) Improved laser vaporization source for production of intense and stable cluster beams. Rev Sci Instrum 61:1835–1838

    Article  Google Scholar 

  • Misiorny M, Burzurí E, Gaudenzi R, Park K, Leijnse M, Wegewijs MR, Paaske J, Cornia A, van der Zant HSJ (2015) Probing transverse magnetic anisotropy by electronic transport through a single-molecule magnet. Phys Rev B 91:035442

    Article  Google Scholar 

  • Mornet S, Vasseur S, Grasset F, Dugnet E (2004) Magnetic nanoparticle design for medical diagnosis and therapy. J Mat Chem 14:2161

    Article  Google Scholar 

  • Mukherjee P, Zhang Y, Kramer MJ, Lewis LH, Shield JE (2012) L10 structure formation in slow-cooled Fe-Au nanoclusters. Appl Phys Lett 100:211911

    Article  Google Scholar 

  • Mukherjee P, Manchanda P, Kumar P, Zhou L, Kramer MJ, Kashyap A, Skomski R, Sellmyer D, Shield JE (2014) Size-induced chemical and magnetic ordering in individual Fe–Au nanoparticles. ACS Nano 8:8113–8120

    Article  Google Scholar 

  • Mülhaup G (1995) Beam stability in the third-generation SR sources. Rev Sci Instrum 66:2000–2005

    Article  Google Scholar 

  • Néel L (1949) Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres cuites. Annales de Géophysique 5:99

    Google Scholar 

  • Ohresser P, Otero E, Wilhelm F, Rogalev A, Goyhenex C, Joly L, Bulou H, Romeo M, Speisser V, Arabski J, Schull G, Scheurer F (2013) Magnetism of CoPd self-organized alloy clusters on Au (111). J Appl Phys 114:223912

    Article  Google Scholar 

  • Oyarzun S, Domingues Tavares De Sa A, Tuaillon-Combes J, Tamion A, Hillion A, Boisron O, Mosset A, Pellarin M, Dupuis V, Hillenkamp M (2013) Giant magnetoresistance in cluster-assembled nanostructures: on the influence of inter-particle interactions. J Nanopart Res 15:1968

    Article  Google Scholar 

  • Oyarzun S, Tamion A, Tournus F, Dupuis V, Hillenkamp M (2015) Size effects in the magnetic anisotropy of embedded cobalt nanoparticles: from shape to surface. Sci Rep 5:14749

    Article  Google Scholar 

  • Paillard V, Melinon P, Dupuis V, Perez A, Perez JP, Champagnon B (1993) Diamond-like carbon films obtained by low energy cluster beam deposition: evidence of a memory effect of the properties of free carbon clusters. Phys Rev Lett 71:4170–4173

    Article  Google Scholar 

  • Palomares-Baez JP, Panizon E, Ferrando R (2017) Nanoscale effects on phase separation. Nano Lett 17:5394–5401

    Article  Google Scholar 

  • Parent F, Tuaillon J, Stern LB, Dupuis V, Prevel B, Perez A, Melinon P, Guiraud G, Morel R, Barthélémy A, Fert A (1997) Giant magnetoresistance in Co-Ag granular films prepared by low-energy cluster beam deposition. Phys Rev B 55:3683–3687

    Article  Google Scholar 

  • Perez A, Melinon P, Dupuis V, Jensen P, Prevel B, Tuaillon J, Bardotti L, Martet C, Treilleux M, Broyer M, Pellarin M, Vialle JL, Palpant B, Lerme J (1997) Cluster assembled materials: a novel class of nanostructured solids with original structures and properties. J Phys D Appl Phys 30:709–721

    Article  Google Scholar 

  • Pierron-Bohnes V, Tamion A, Tournus F and Dupuis V (2012) Magnetism of low-dimension alloys. Chapter 9 in Nanoalloys : synthesis, structure and properties. In: , Editors D. Alloyeau, C. Mottet and C. Ricolleau (eds), Book published by Springer ISBN : 978–1–4471-4013-9

  • Pohl D, Wiesenhütter U, Mohn E, Schultz L, Rellinghaus B (2014) Near-surface strain in icosahedra of binary metallic alloys: segregational versus intrinsic effects. Nano Lett 14:1776–1784

    Article  Google Scholar 

  • Proux O, Nassif V, Prat A, Ulrich O, Lahera E, Biquard X, Menthonnex J, Hazemann J (2006) Feedback system of a liquid-nitrogen-cooled double-crystal monochromator: design and performances. J Synchrotron Radiat 13:59–68

    Article  Google Scholar 

  • Ramade J, Langlois C, Pellarin M, Piccolo L, Lebeault M, Epicier T, Aouine M, Cottancin E (2017) Tracking the restructuring of oxidized silver-indium nanoparticles under a reducing atmosphere by environmental HRTEM. Nano 9:13563

    Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  Google Scholar 

  • Rohart S, Raufast C, Favre L, Bernstein E, Bonet E, Dupuis V (2006) Magnetic anisotropy of CoxPt1−x clusters embedded in a matrix: influences of the cluster chemical composition and the matrix nature. Phys Rev B 74:104408

    Article  Google Scholar 

  • Romming N, Kubetzka A, Hanneken C, von Bergmann K, Wiesendanger R (2015) Field-dependent size and shape of single magnetic skyrmion. Phys Rev Lett 114:177203

    Article  Google Scholar 

  • Sandhu A, Handa H, Abe M (2010) Synthesis and applications of magnetic nanoparticles for biorecognition and point of care medical diagnostics. Nanotechnology 21:442001

    Article  Google Scholar 

  • Schmidt F, Pohl D, Schultz L, Rellinghaus B (2015) Segregation phenomena in Nd-Fe-B nanoparticles. J Nanopart Res 17:170

    Article  Google Scholar 

  • Schott M, Bernand-Mantel A, Ranno L, Pizzini S, Vogel J, Béa H, Baraduc C, Auffret S, Gaudin G, Givord D (2017) The skyrmion switch: turning magnetic skyrmion bubbles on and off with an electric field. Nano Lett 17:3006–3012

    Article  Google Scholar 

  • Skomski R, Manchanda P, Takeushi I, Cui J (2014) Optimum thickness of soft magnetic phase in FePt/FeCo permanent magnet superlattices with high energy product and large magnetic anisotropy energy. JOM 66:1144–1150

    Article  Google Scholar 

  • Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J (2003) Beating the superparamagnetic limit with exchange bias. Nature 423:850–853

    Article  Google Scholar 

  • Tamion A, Hillenkamp M, Tournus F, Bonet E, Dupuis V (2009) Accurate determination of the magnetic anisotropy in cluster-assembled nanostructures. Appl Phys Lett 95:062503

    Article  Google Scholar 

  • Tamion A, Hillenkamp M, Hillion A, Tournus F, Tuaillon-Combes J, Boisron O, Zafeiratos S, Dupuis V (2011) Demixing in cobalt clusters embedded in a carbon matrix evidenced by magnetic measurements. J Appl Phys 110:063904

    Article  Google Scholar 

  • Tamion A, Bonet E, Tournus F, Raufast C, Hillion A, Gaier O, Dupuis V (2012) Efficient hysteresis loop simulations of nanoparticle assemblies beyond the uniaxial anisotropy. Phys Rev B 85:13443

    Article  Google Scholar 

  • Thole BT, Carra P, Sette F, van der Laan G (1992) X-ray circular dichroism as a probe of orbital magnetization. Phys Rev Lett 68:1943–1946

    Article  Google Scholar 

  • Tournus F, Tamion A, Blanc N, Ohresser P, Dupuis V (2008) XMCD study of CoPt nanoparticles embedded in MgO and amorphous carbon matrices. J Electron Spectrosc Relat Phenom 166-167:84–88

    Article  Google Scholar 

  • Tournus F, Blanc N, Tamion A, Hillenkamp M, Dupuis V (2011) Synthesis and magnetic properties of size-selected CoPt nanoparticles. J Mag Mag Mat 323:1868–1872

    Article  Google Scholar 

  • Tournus F, Sato K, Epicier T, Konno TJ, Dupuis V (2013) Multi-L10 domain CoPt and FePt nanoparticles revealed by electron microscopy. Phys Rev Lett 110:055501

    Article  Google Scholar 

  • Xie Y, Blackman JA (2004) Magnetic anisotropy of nanoscale cobalt particles. J Phys Condens Matter 16:3163

    Article  Google Scholar 

  • Yang Y, Chen CC, Scott MC, Ophus C, Xu R, Pryor A, Wu L, Sun F, Theis W, Zhou J, Eisenbach M, Kent PR, Sabirianov RF, Zeng H, Ercius P, Miao J (2017) Deciphering chemical order/disorder and material properties at the single-atom level. Nature 542:75–79

    Article  Google Scholar 

  • Zhuravlev IA, Barabash SV, An JM, Belashchenko KD (2017) Phase stability, ordering tendencies, and magnetism in single-phase fcc Au-Fe nanoalloys. Phys Rev B 96:134109

    Article  Google Scholar 

Download references

Acknowledgements

All the clusters samples were prepared in the PLYRA platform, created in the frame of project agreement 1989-1993 between the French State and the Rhône-Alps Region, as a joint initiative of A. Perez, M. Broyer, and A. Renouprez from three laboratories of Lyon (LPMCN: Laboratoire de Physique de la Matière Condensée et Nanostructures – UMR UCBL-SPM CNRS No. 5586 - LASIM: Laboratoire de Spectrométrie Ionique et Moléculaire – UMR UCBL-SPM CNRS No. 5579 - IRCELYON: Institut de Recherche sur la Catalyse – UPR Chimie CNRS No. 5401). Many thanks to them and to the technical staff G. Guiraud, F. Valladier, and C. Clavier, startup responsibles of the building and development of the laser vaporization cluster machines at the Université Claude Bernard Lyon 1 (UCBL) but also to all the PhD students and post-doc researchers who have participated to the adventure. SQUID measurements were first performed at the Néel institute then at the CML platform created in 2008 at UCBL. The authors are also grateful to A. Ramos, H. Tolentino, M. de Santis, and O. Proux for their help during XRD and EXAFS experiments on the French CRG-D2AM and BM30b-FAME beamlines at ESRF, to S. Rusponi and H. Brune from EPFL for stimulating discussions, to J. Dreiser, C. Piamonteze, and F. Nolting from Swiss Light Source for their investment on the X-Treme beamline, to P. Ohresser from DEIMOS beam line SOLEIl synchrotron, and to K. Fauth from University of Wuerzburg for their help at BESSY II experiments, A. Rogalev and F. Wilhelm from the ESRF ID12 beamline for the XMCD measurements.

Funding

Support is acknowledged from the French National CNRS ACI, METSA network, GDR and ANR on clusters and Nanoalloys and from the European Community AMMARE contract no. G5RD-CT 2001-0047P, STREP SFINx, no. NMP2-CT-2003-505587, and COST-STSM-MP0903 on nanoalloys.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Dupuis.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Donald Tomalia, Paolo Milani and Kenneth Dawson, co-editors

This article is part of the topical collection: Unifying Concepts for Nanoscience and Nanosystems: 20th Anniversary Issue

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dupuis, V., Hillion, A., Robert, A. et al. Bottom-up strategies for the assembling of magnetic systems using nanoclusters. J Nanopart Res 20, 128 (2018). https://doi.org/10.1007/s11051-018-4189-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-018-4189-3

Keywords

Navigation