Skip to main content
Log in

Facile preparation of polyaniline-carbon nanotube hybrid electrodes and dependence of their supercapacitive properties on degree of carboxylation of carbon nanotubes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This paper reports on the preparation of polyaniline-carbon nanotube (PANi-CNT) hybrid electrodes via a facile electro-co-deposition method. In the process, carboxylated CNTs, which serve as counter anions in the electrodes, are incorporated into PANi. Supercapacitive properties of PANi-CNT hybrid electrodes are observed to depend on the degree of carboxylation of CNTs. Electrochemical measurements show two key results. First, the incorporation of CNTs observably improves the supercapacitive properties of PANi electrodes. Second, the CNTs with higher degree of carboxylation result in further improvement in supercapacitive properties of the hybrid electrodes. The former observation is attributed to the high electrical conductivity and large surface area of CNTs, which improve the electrical conductivities of the hybrids and facilitate the dispersion of PANi. The latter is in line with the fact that more CNTs are incorporated into the hybrids due to higher degree of carboxylation. The PANi-CNT electrodes prepared by CNTs with higher degree of carboxylation demonstrate remarkable supercapacitive performances, including high specific capacitance of 578.2 F g−1 and good rate performance. They also have superior cycling stability, showing 88.2% of capacitance retention after 10,000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alptekin A, Recep Y, Emrah UH (2018) Vertically aligned carbon nanotube-polyaniline nanocomposite supercapacitor electrodes. Int J Hydrog Energy 43:18617–18625

    Google Scholar 

  • An C, Wang Z, Xi W, Wang K, Liu X, Ding Y (2019) Nanoporous Cu@Cu2O hybrid arrays enable photo-assisted supercapacitor with enhanced capacities. J Mater Chem A 7:15691–15697

    CAS  Google Scholar 

  • Ansari SA, Fouad H, Ansari SG, Sk MP, Cho MH (2017) Mechanically exfoliated MoS2 sheet coupled with conductive polyaniline as a superior supercapacitor electrode material. J Colloid Interface Sci 504:276–282

    CAS  Google Scholar 

  • Arcila-Velez MR, Emmett RK, Karakaya M, Podila R, Díaz-Orellana KP, Rao AM, Roberts ME (2016) A facile and scalable approach to fabricating free-standing polymer-carbon nanotube composite electrodes. Synth Met 215:35–40

    CAS  Google Scholar 

  • Arulmani S, Wu JJ, Anandan S (2017) Amphiphilic triblock copolymer guided polyaniline embraced CNT nanohybrid with outcropping whiskers as an energy storage electrode. Electrochim Acta 246:737–747

    CAS  Google Scholar 

  • Chang CM, Weng CJ, Chien CM, Chuang TL, Lee TY, Yeh JM, Wei Y (2013) Polyaniline/carbon nanotube nanocomposite electrodes with biomimetic hierarchical structure for supercapacitors. J Mater Chem A 1:14719–14728

    CAS  Google Scholar 

  • Chang P, Mei H, Zhao Y, Huang W, Zhou S, Cheng L (2019) 3D structural strengthening urchin-like Cu(OH)2-based symmetric supercapacitors with adjustable capacitance. Adv Funct Mater:1903588

  • Chen W, Yu H, Lee S, Wei T, Li J, Fan Z (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872

    CAS  Google Scholar 

  • Chen S, Liu B, Zhang X, Chen F, Shi H, Hu C, Chen J (2019) Growth of polyaniline on TiO2 tetragonal prism arrays as electrode materials for supercapacitor. Electrochim Acta 300:373–379

    CAS  Google Scholar 

  • Gao J, Ma Y, Li J, Fan J, Shi P, Xu Q, Min Y (2018) Free-standing WS2-MWCNTs hybrid paper integrated with polyaniline for high-performance flexible supercapacitor. J Nanopart Res 20:298

    Google Scholar 

  • Gobal F, Faraji M (2013) Electrodeposited polyaniline on Pd-loaded TiO2 nanotubes as active material for electrochemical supercapacitor. J Electroanal Chem 691:51–56

    CAS  Google Scholar 

  • Gu H, Zhang H, Lin J, Shao Q, Young DP, Sun L, Shen TD, Guo Z (2018) Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. Polymer 143:324–330

    CAS  Google Scholar 

  • Gu Y, Fan LQ, Huang JL, Geng CL, Lin JM, Huang ML, Huang YF, Wu JH (2019) N-doped reduced graphene oxide decorated NiSe2 nanoparticles for high-performance asymmetric supercapacitors. J Power Sources 425:60–68

    CAS  Google Scholar 

  • Guo F, Mi H, Zhou J, Zhao Z, Qiu J (2015) Hybrid pseudocapacitor materials from polyaniline@multi-walled carbon nanotube with ultrafine nanofiber-assembled network shell. Carbon 95:323–329

    CAS  Google Scholar 

  • Gupta V, Miura N (2006) Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites. J Power Sources 157:616–620

    CAS  Google Scholar 

  • Hao Q, Xia X, Lei W, Wang W, Qiu J (2015) Facile synthesis of sandwich-like polyaniline/boron-doped graphene nano hybrid for supercapacitors. Carbon 81:552–563

    CAS  Google Scholar 

  • Hao Z, Yang S, Niu J, Fang Z, Liu L, Dong Q, Song S, Zhao Y (2018) A bimetallic oxide Fe1.89Mo4.11O7 electrocatalyst with highly efficient hydrogen evolution reaction activity in alkaline and acidic media. Chem Sci 9:5640–5645

    CAS  Google Scholar 

  • He X, Liu G, Yan B, Suo H, Zhao C (2016) Significant enhancement of electrochemical behaviour by incorporation of carboxyl group functionalized carbon nanotubes into polyaniline based supercapacitor. Eur Polym J 83:53–59

    CAS  Google Scholar 

  • Hui N, Chai F, Lin P, Song Z, Sun X, Li Y, Niu S, Luo X (2016) Electrodeposited conducting polyaniline nanowire arrays aligned on carbon nanotubes network for high performance supercapacitors and sensors. Electrochim Acta 199:234–241

    CAS  Google Scholar 

  • Li C, Yang L, Meng Y, Hu X, Wei Z, Chen P, Zhou S (2013) Tuning PANI nanostructure by driving force for diverse capacitance performance. RSC Adv 3:21315–21319

    CAS  Google Scholar 

  • Li X, Liu Y, Guo W, Chen J, He W, Peng F (2014) Synthesis of spherical PANI particles via chemical polymerization in ionic liquid for high-performance supercapacitors. Electrochim Acta 135:550–557

    CAS  Google Scholar 

  • Li K, Liu X, Chen S, Pan W, Zhang J (2019) A flexible solid-state supercapacitor based on graphene/polyaniline paper electrodes. J Energy Chem 32:166–173

    Google Scholar 

  • Li J, Wang Y, Xu W, Wang Y, Zhang B, Luo S, Zhou X, Zhang C, Gu X, Hu C (2019a) Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 57:379–387

    CAS  Google Scholar 

  • Li K, Liu X, Zheng T, Jiang D, Zhou Z, Liu C, Zhang X, Zhang Y, Losic D (2019b) Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chemical Eng J 370:136–147

    CAS  Google Scholar 

  • Li P, Ruan C, Xu J, Xie Y (2019c) A high-performance asymmetric supercapacitor electrode based on a three-dimensional ZnMoO4/CoO nanohybrid on nickel foam. Nanoscale 11:13639–13649

    CAS  Google Scholar 

  • Liang J, Su S, Fang X, Wang D, Xu S (2016) Electrospun fibrous electrodes with tunable microstructure made of polyaniline/multi-walled carbon nanotube suspension for all-solid-state supercapacitors. Mater Sci Eng B 211:61–66

    CAS  Google Scholar 

  • Liu P, Wang X, Li H (2013) Preparation of carboxylated carbon nanotubes/polypyrrole composite hollow microspheres via chemical oxidative interfacial polymerization and their electrochemical performance. Synth Met 181:72–78

    CAS  Google Scholar 

  • Liu D, Xue W, Jinxing D, Chenglong Z, Jinshan G, Peng L (2015) Crosslinked carbon nanotubes/polyaniline composites as a pseudocapacitive material with high cycling stability. Nanomaterials 5:1034–1047

    CAS  Google Scholar 

  • Liu XX, Wu R, Wang Y, Xiao SH, He Q, Niu XB, Blackwood DJ, Chen JS (2019) Self-supported core/shell Co3O4@Ni3S2 nanowires for high-performance supercapacitors. Electrochim Acta 311:221–229

    CAS  Google Scholar 

  • Luo J, Ma Q, Gu H, Zheng Y, Liu X (2015) Three-dimensional graphene-polyaniline hybrid hollow spheres by layer-by-layer assembly for application in supercapacitor. Electrochim Acta 173:184–192

    CAS  Google Scholar 

  • Lv T, Yao Y, Li N, Chen T (2016) Highly stretchable supercapacitors based on aligned carbon nanotube/molybdenum disulfide composites. Angew Chem Int Edit 55:9191–9195

    CAS  Google Scholar 

  • Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78

    CAS  Google Scholar 

  • Malik R, Zhang L, McConnell C, Schott M, Hsieh Y-Y, Noga R, Alvarez NT, Shanov V (2017) Three-dimensional, free-standing polyaniline/carbon nanotube composite-based electrode for high-performance supercapacitors. Carbon 116:579–590

    CAS  Google Scholar 

  • Miao F, Shao C, Li X, Wang K, Lu N, Liu Y (2016) Electrospun carbon nanofibers/carbon nanotubes/polyaniline ternary composites with enhanced electrochemical performance for flexible solid-state supercapacitors. ACS Sustain Chem Eng 4:1689–1696

    CAS  Google Scholar 

  • Okpalugo TIT, Papakonstantinou P, Murphy H, McLaughlin J, Brown NMD (2005) High resolution XPS characterization of chemical functionalised MWCNTs and SWCNTs. Carbon 43:153–161

    CAS  Google Scholar 

  • Otrokhov G, Pankratov D, Shumakovich G, Khlupova M, Zeifman Y, Vasil’eva I, Morozova O, Yaropolov A (2014) Enzymatic synthesis of polyaniline/multi-walled carbon nanotube composite with core shell structure and its electrochemical characterization for supercapacitor application. Electrochim Acta 123:151–157

    CAS  Google Scholar 

  • Pilan L, Raicopol M, Pruna A, Branzoi V (2012) Polyaniline/carbon nanotube composite films electrosynthesis through diazonium salts electroreduction and electrochemical polymerization. Surf Interface Anal 44:1198–1202

    CAS  Google Scholar 

  • Ramana GV, Srikanth VVSS, Padya B, Jain PK (2014) Carbon nanotube–polyaniline nanotube core–shell structures for electrochemical applications. Eur Polym J 57:137–142

    CAS  Google Scholar 

  • Salunkhe RR, Lin J, Malgras V, Dou SX, Kim JH, Yamauchi Y (2015) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218

    CAS  Google Scholar 

  • Shao Z, Li H, Li M, Li C, Qu C, Yang B (2015) Fabrication of polyaniline nanowire/TiO2 nanotube array electrode for supercapacitors. Energy 87:578–585

    CAS  Google Scholar 

  • Simotwo SK, DelRe C, Kalra V (2016) Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline-carbon nanotube nanofibers. ACS Appl Mater Interfaces 8:21261–21269

    CAS  Google Scholar 

  • Singu BS, Srinivasan P, Yoon KR (2016) Emulsion polymerization method for polyaniline-multiwalled carbon nanotube nanocomposites as supercapacitor materials. J Solid State Electrochem 20:3447–3457

    Google Scholar 

  • Sumboja A, Liu J, Zheng W, Zong Y, Zhang H, Liu Z (2018) Electrochemical energy storage devices for wearable technology: a rationale for materials selection and cell design. Chem Soc Rev 47:5919

    CAS  Google Scholar 

  • Sun B, He X, Leng X, Jiang Y, Zhao Y, Suo H, Zhao C (2016) Flower-like polyaniline-NiO structures: a high specific capacity supercapacitor electrode material with remarkable cycling stability. RSC Adv 6:43959–43963

    CAS  Google Scholar 

  • Tan YT, Ran F, Kong LB, Liu J, Kang L (2012) Polyaniline nanoparticles grown on the surface of carbon microspheres aggregations for electrochemical supercapacitors. Synth Met 162:114–118

    CAS  Google Scholar 

  • Wang R, Wu Q, Zhang X, Yang Z, Gao L, Ni J, Tsui OKC (2016a) Flexible supercapacitors based on a polyaniline nanowire-infilled 10 nm-diameter carbon nanotube porous membrane by in situ electrochemical polymerization. J Mater Chem A 4:12602–12608

    CAS  Google Scholar 

  • Wang Y, Xuan H, Lin G, Wang F, Chen Z, Dong X (2016b) A melamine-assisted chemical blowing synthesis of N-doped activated carbon sheets for supercapacitor application. J Power Sources 319:262–270

    CAS  Google Scholar 

  • Wang Z, Qiang H, Zhang C, Zhu Z, Chen M, Chen C, Zhang D (2018) Facile fabrication of hollow polyaniline spheres and its application in supercapacitor. J Polym Res 25:129

    Google Scholar 

  • Wang X, Zhao J, Li Z, Xiao T, Li Z, Wang X (2019a) Effects of preparation conditions on the supercapacitor performances of MnO2-PANI/titanium foam composite electrodes. J Nanopart Res 21:119

    Google Scholar 

  • Wang FP, Zheng JF, Ma J, Zhou KL, Wang QZ (2019b) One-step facile route to glucose/copper cobalt sulfide nanorod for high-performance asymmetric supercapacitors. J Nanopart Res 21:189

    Google Scholar 

  • Wu J, Qe Z, Wang J, Huang X, Bai H (2018) A self-assembly route to porous polyaniline/reduced graphene oxide composite materials with molecular-level uniformity for high-performance supercapacitors. Energy Environ Sci 11:1280–1286

    CAS  Google Scholar 

  • Xin ZP, Li WX, Fang W, He X, Zhao L, Chen H, Zhang WQ, Sun ZM (2017) Enhanced specific surface area by hierarchical porous graphene aerogel/carbon foam for supercapacitor. J Nanopart Res 19:386

    Google Scholar 

  • Xu HL, Li XW, Wang GC (2015) Polyaniline nanofibers with a high specific surface area and an improved pore structure for supercapacitors. J Power Sources 294:16–21

    CAS  Google Scholar 

  • Yan Y, Cheng Q, Wang G, Li C (2011) Growth of polyaniline nanowhiskers on mesoporous carbon for supercapacitor application. J Power Sources 196:7835–7840

    CAS  Google Scholar 

  • Yin J, Qi L, Wang H (2013) Anti-freezing aqueous electrolytes for electric double-layer capacitors. Electrochim Acta 88:208–216

    CAS  Google Scholar 

  • Yu P, Zhang Z, Zheng L, Teng F, Hu L, Fang X (2016) A novel sustainable flour derived hierarchical nitrogen-doped porous carbon/polyaniline electrode for advanced asymmetric supercapacitors. Adv Energy Mater 6:1601111

    Google Scholar 

  • Zhang J, Li X, Wang X, Qiu B, Li Z, Ding J (2016) Preparation of vertically aligned carbon nanotube/polyaniline composite membranes and the flash welding effect on their supercapacitor properties. RSC Adv 6:98598–98605

    CAS  Google Scholar 

  • Zhang L, Huang D, Hu N, Yang C, Li M, Wei H, Yang Z, Su Y, Zhang Y (2017) Three-dimensional structures of graphene/polyaniline hybrid films constructed by steamed water for high-performance supercapacitors. J Power Sources 342:1–8

    CAS  Google Scholar 

  • Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44:7484–7539

    CAS  Google Scholar 

  • Zhou Y, Qin ZY, Li L, Zhang Y, Wei YL, Wang LF, Zhu MF (2010) Polyaniline/multi-walled carbon nanotube composites with core-shell structures as supercapacitor electrode materials. Electrochim Acta 55:3904–3908

    CAS  Google Scholar 

  • Zhou W, Sasaki S, Kawasaki A (2014a) Effective control of nanodefects in multiwalled carbon nanotubes by acid treatment. Carbon 78:121–129

    CAS  Google Scholar 

  • Zhou Z, Wu XF, Hou H (2014b) Electrospun carbon nanofibers surface-grown with carbon nanotubes and polyaniline for use as high-performance electrode materials of supercapacitors. RSC Adv 4:23622–23629

    CAS  Google Scholar 

  • Zhou HH, Zhai HJ, Zhi XM (2018) Enhanced electrochemical performances of polypyrrole/carboxyl graphene/carbon nanotubes ternary composite for supercapacitors. Electrochim Acta 290:1–11

    CAS  Google Scholar 

  • Zhou H, Lu Y, Wu F, Fang L, Luo H, Zhang Y, Zhou M (2019a) MnO2 nanorods/MXene/CC composite electrode for flexible supercapacitors with enhanced electrochemical performance. J Alloys Comp 802:259–268

    CAS  Google Scholar 

  • Zhou Y, Wang X, Acauan L, Kalfon-Cohen E, Ni X, Stein Y, Gleason KK, Wardle BL (2019b) Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays. Adv Mater:1901916

  • Zhu ZZ, Wang GC, Sun MQ, Li XW, Li CZ (2011) Fabrication and electrochemical characterization of polyaniline nanorods modified with sulfonated carbon nanotubes for supercapacitor applications. Electrochim Acta 56:1366–1372

    CAS  Google Scholar 

  • Zhu C, He Y, Liu Y, Kazantseva N, Saha P, Cheng Q (2019) ZnO@MOF@PANI core-shell nanoarrays on carbon cloth for high-performance supercapacitor electrodes. J Energy Chem 35:124–131

    Google Scholar 

  • Zou Y, Wang Y, Fang Z, Wu D, Yang S, Hao Z, Lang J, Dong Q (2018) Sulfur powder as a reducing agent to synthesize the Ni@Ni(OH)2 flower-like material for electrochemical capacitors. J Nanosci Nanotechnol 18:7732–7738

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21975147, 21601113, 21873058, and 21573138), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2017112), the Fund for Shanxi “1331 Project” Key Innovative Research Team, and the Sanjin Scholar Distinguished Professors Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haihan Zhou or Hua-Jin Zhai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Zhang, W., Zhou, H. et al. Facile preparation of polyaniline-carbon nanotube hybrid electrodes and dependence of their supercapacitive properties on degree of carboxylation of carbon nanotubes. J Nanopart Res 22, 6 (2020). https://doi.org/10.1007/s11051-019-4737-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4737-5

Keywords

Navigation