Skip to main content
Log in

Compartmentalization of Non-Synaptic Plasticity in Neurons at the Subcellular Level

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

One efficient by which the nervous system responds to a diversity of external and internal signals consists of increases in the excitability of individual neurons acquired, for example, during the learning process. It is now well established that persistent non-synaptic neuronal plasticity arises after learning and, like synaptic plasticity, can serve as a substrate for long-term memory. However, it remains unknown how nonsynaptic plasticity contributes to changes in the state of the neural networks on which memory is directly dependent. Attempts to find an explanation of how non-synaptic plasticity is translated into a modified state of the neural network and altered behavior constitute one of the most important tasks in contemporary studies of learning and memory. There is also little information on the specific neuronal compartments undergoing plastic changes in the context of the morphological characteristics of a given neuron and the mechanisms regulating the efficiency of its input and output synapses when non-synaptic changes occur in cells. The present review addresses the most important questions of compartmentalization of nonsynaptic plasticity and the effects of non-synaptic plastic changes on the efficiency of the synapses of the neuron concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alle and J. R. Geiger, “Combined analog and action potential coding in hippocampal mossy fibers,” Science, 311, No. 5765, 1260–1293 (2006).

    Article  Google Scholar 

  2. F. Amaya, H. Wang, M. Costigan, et al., “The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity,” J. Neurosci., 26, 12,852–12,860 (2006).

    Article  CAS  Google Scholar 

  3. V. Brezina, I. V. Orekhova, and K. R. Weiss, “Neuromuscular modulation in Aplysia. I. Dynamic model,” J. Neurophysiol., 90, No. 4, 2592–2612 (2003).

    Article  PubMed  Google Scholar 

  4. D. Debanne, G. Daoudal, V. Sourdet, and M. Russier, “Brain plasticity and ion channels,” J. Physiol. (Paris), 97, 403–414 (2003).

    Article  CAS  Google Scholar 

  5. D. Debanne, N. C. Guérineau, B. H. Gähwiler, and S. M. Thompson, “Action-potential propagation gated by an axonal I(A)-like K+ conductance in hippocampus,” Nature, 389, 286–289 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. S. D. Sib-Hajj, J. Fjell, T. R. Cummins, et al., “Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain,” Pain, 83, 591–600 (1999).

    Article  Google Scholar 

  7. I. A. Fleidervish, N. Lasser-Ross, M. J. Gutnick, and W. N. Ross, “Na+ imaging reveals little difference in action potential-evoked Na+ influx between axon and soma,” Nat. Neurosci., 13, No. 7, 852–860 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. A. Foust, M. Popovic, D. Zecevic, and D. A. McCormick, “Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons,” J. Neurosci., 30, No. 20, 6891–5902 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. A. J. Foust, Y. Yu, M. Popovic, D. Zecevic, and D. A. McCormick, “Somatic membrane potential and Kv1 channels control spike repolarization in cortical axon collaterals and presynaptic boutons,” J. Neurosci., 31, 15,490–15,498 (2011).

    Article  CAS  Google Scholar 

  10. C. R. French, P. Sah, K. J. Buckett, and P. W. Gage, “A voltagedependent persistent sodium current in mammalian hippocampal neurons,” J. Gen. Physiol., 95, 1139–1157 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. A. Frick, J. Magee, and D. Johnston, “LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites,” Nat. Neurosci., 7, 126–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. J. J. Garrido, P. Giraud, E. Carlier, et al., “A targeting motif involved in sodium channel clustering at the axonal initial segment,” Science, 300, No. 5628, 12091–2094 (2003).

    Article  Google Scholar 

  13. K. P. Giese, M. Peters, and J. Vernon, “Modulation of excitability as a learning and memory mechanism: A molecular genetic perspective,” Physiol. Behav., 73, No. 5, 803–810 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. M. S. Gold, D. B. Reichling, M. J. Shuster, and J. D. Levine, “Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors,” Proc. Natl. Acad. Sci. USA, 93, 1108–1112 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. M. Grimaldi, M. Atzori, P. Ray, and D. L. Alkon, “Mobilization of calcium form intracellular stores, potentiation of neurotransmitterinduced calcium transients, and capacitative calcium entry by 4-aminopyridine,” J. Neurosci., 21, No. 9, 3135–3143 (2001).

    CAS  PubMed  Google Scholar 

  16. M. S. Grubb and J. Burrone, “Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability,” Nature, 465, No. 7301, 1070–1074 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. J. Gründemann and M. Häusser, “Neuroscience: A plastic neuronal hotspot,” Nature, No. 465, No. 7301, 1022–1023 (2010).

  18. N. G. Jones, J. Kemenes, G. Kemenes, and P. R. Benjamin, “A persistent cellular change in a single modulatory neuron contributes to associative long-term memory,” Curr. Biol., 13, No. 12, 1064–1069 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. K. S. Rósza and T. L. Dyakonova, “Modification of plasticity by FMRFamide in the identified neurons of Helix pomatia L.,” Comp. Biochem. Physiol., 87C, No. 1, 153–159 (1987).

    Google Scholar 

  20. I. Kemenes, V. A. Straub, E. S. Nikitin, et al., “Role of delayed nonsynaptic neuronal plasticity in long-term associative memory,” Curr. Biol., 16, 1269–1279 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. M. H. Kole, “First node of Ranvier facilitates high-frequency burst encoding,” Neuron, 71, No. 4, 671–682 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. M. H. Kole, S. U. Ilschner, B. M. Kampa, et al., “Action potential generation requires a high sodium channel density in the axon initial segment,” Nat. Neurosci., 11, No. 2, 178–186 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. H. Y. Kuba,Y. Oichi, and H. Ohmori, “Presynaptic activity regulates Na+ channel distribution at the axon initial segment,” Nature, 465, No. 731, 1075–1078 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. I. Kupfermann, “Feeding behavior in Aplysia: a simple system for the study of motivation,” Behav. Biol., 10, No. 1, 1–26 (1974).

    Article  CAS  PubMed  Google Scholar 

  25. I. K. Kupfermann and R. Weiss, “Activity of an identified serotonergic neuron in free moving Aplysia correlates with behavioral arousal,” Brain Res., 241, No. 2, 334–337 (1982).

    Article  CAS  PubMed  Google Scholar 

  26. A. Lesonczy, J. K. Makara, and J. C. Magee, “Compartmentalized dendritic plasticity and input feature storage in neurons,” Nature, 452, 436–441 (2008).

    Article  Google Scholar 

  27. J. C. Magee and D. Johnston, “Plasticity of dendritic function,” Curr. Opin. Neurobiol., 15, No. 3, 334–342 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. S. Marinesco, K. E. Kolkman, and T. J. Carew, “Serotonergic modulation in Aplysia. I. Distributed serotonergic network persistently activated by sensitizing stimuli,” J. Neurophysiol., 92, No. 4, 2468–2486 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. R. Mozzachiodi and J. H. Byrne, “More than synaptic plasticity: role of nonsynaptic plasticity in learning and memory,” Trends Neurosci., 33, No. 1, 17–26 (2010).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. E. S. Nikitin, T. Kiss, K. Staras, et al., “Persistent sodium current is a target for cAMP-induced neuronal plasticity in a state-setting modulatory interneuron,” J. Neurophysiol., 95, 453–463 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. E. S. Nikitin, D. V. Vavoulis, I. Kemenes, et al., “Persistent sodium current is a non-synaptic substrate for long-term associative memory,” Curr. Biol., 18, 1221–1226 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. V. P. Nikitin, “A new mechanism of synapse-specific neuronal plasticity,” Neurosci. Behav. Physiol., 37, No. 6, 559–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. L. M. Palmer and G. J. Stuart, “Site of action potential initiation in layer 5 pyramidal neurons,” J. Neurosci., 26, No. 6, 1854–1863 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Y. Shu, A. Hasenstaub, A. Duque, et al., “Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential,” Nature, 441, No. 7094, 761–765 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. C. E. Stafstrom, “Persistent sodium current and its role in epilepsy,” Epilepsy Curr., 7, 15–22 (2007).

    Article  PubMed Central  PubMed  Google Scholar 

  36. K. Staras, J. Gyori, and G. Kemenes, “Voltage-gated ionic currents in an identified modulatory cell type controlling molluscan feeding,” Eur. J. Neurosci., 15, 109–119 (2002).

    Article  PubMed  Google Scholar 

  37. T. Teyke, K. R. Weiss, and I. Kupfermann, “Appetitive feeding behavior of Aplysia: behavioral and neural analysis of directed head turning,” J. Neurosci., 10, 3922–1934 (1990).

    CAS  PubMed  Google Scholar 

  38. D. V. Vavoulis, E. S. Nikitin, I. Kemenes, et al., “Balanced plasticity and stability of the electrical properties of a molluscan modulatory interneuron after classical conditioning: a computational study,” Front. Behav. Neurosci., 4, 19 (2010).

    PubMed Central  PubMed  Google Scholar 

  39. K. Vervaeke, H. Hu, L. J. Graham, and J. F. Storm, “Contrasting effects of the persistent Na+ current on neuronal excitability and spike timing,” Neuron, 49, 257–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Z. Z. Wu, D. P. Li, S. R. Chen, and H. L. Pan, “Aminopyridines potentiate synaptic and neuromuscular transmission by targeting the voltage-activated calcium channel beta subunit,” J. Biol. Chem., 284, 37,453–36,461 (2009).

    Google Scholar 

  41. M. S. Yeoman, G. Kemenes, P. R. Benjamin, and C. J. Elliott, “Modulatory role for the serotonergic cerebral giant cells in the feeding system of the snail, Lymnaea. II. Photoinactivation,” J. Neurophysiol., 72, No. 3, 1372–1382 (1994).

    CAS  PubMed  Google Scholar 

  42. W. Zhang and D. J. Linden, “The other side of the engram: experience-driven changes in neuronal intrinsic excitability,” Nat. Rev. Neurosci., 4, No. 11, 885–900 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Nikitin.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 63, No. 3, pp. 295–302, May–June, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikitin, E.S., Balaban, P.M. Compartmentalization of Non-Synaptic Plasticity in Neurons at the Subcellular Level. Neurosci Behav Physi 44, 725–730 (2014). https://doi.org/10.1007/s11055-014-9975-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-014-9975-5

Keywords

Navigation