Skip to main content
Log in

Extinction and Reconsolidation of Memory

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Extraction (reactivation) of memory on reminding can lead to the process of reconsolidation, in which memory retention occurs, or to extinction, leading to weakening of the existing memory trace or the formation of a competing memory. This review analyzes behavior and also the responses of identified neurons forming the neural network for feeding and aversive behavior in the common snail Helix; an attempt is made to describe the conditions in which reminding leads to extinction or reconsolidation. Studies using a neurotoxin specific for serotoninergic neurons – 5,7-dihydroxytryptamine - demonstrated that the serotoninergic system of the snail is required for formation of memories of dangerous stimuli, though it has no role in maintaining or reproducing these memories. This hypothesis raises the question of the activity of serotoninergic neurons as a key condition for selecting between extinction and reconsolidation triggered by reactivation. If a cell is “silent” as a result of adaptation, acclimation, changes in the surroundings, etc., extinction is observed; if the same neuron responds to the conditioned stimulus, reconsolidation occurs. Memory reconsolidation and extinction are evolutionarily conserved phenomena seen in most vertebrates and many invertebrates, suggesting that they reflect the major characteristics of memory formation and storage. The great variation in brain structure in different vertebrate and invertebrate species prevents the phenomena of reconsolidation and extinction from being regarded as systems properties of the brain; rather, they are the basic neural mechanisms which can be seen in any animal with a sufficiently developed nervous system, regardless of the actual architecture of the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberini, C. M. and Ledoux, J. E., “Memory reconsolidation,” Curr. Biol., 23, No. 17, 746–750 (2013).

    Article  Google Scholar 

  • Anokhin. K. V., Tiunova, A. A., and Rose, S. P., “Reminder effects – reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks,” Eur. J. Neurosci., 15, No. 11, 1759–1765 (2002).

    Article  PubMed  Google Scholar 

  • Artinian, J., McGauran, A. M., De Jaeger, X., et al., “Protein degradation, as with protein synthesis, is required during not only long-term spatial memory consolidation but also reconsolidation,” Eur. J. Neurosci., 27, No. 11, 3009–3019 (2008).

    Article  PubMed  Google Scholar 

  • Balaban, P. M. and Maksimova, O. A., “Differences in the responses of identified neurons to chemical stimuli in satiated and hungry edible snails,” Zh. Vyssh. Nerv. Deyat., 38, No. 1, 146–152 (1988).

    CAS  Google Scholar 

  • Balaban, P. M., “Cellular mechanisms of behavioral plasticity in terrestrial snail,” Neurosci. Biobehav. Rev., 26, No. 5, 597–630 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Balaban, P. M., Bravarenko, N. L., Maksimova, O. A., et al., “A single serotonergic modulatory cell can mediate reinforcement in the withdrawal network of the terrestrial snail,” Neurobiol. Learn. Mem., 75, No. 1, 30–50 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Balaban, P. M., Korshunova, T. A., and Bravarenko, N. I., “Postsynaptic calcium contributes to reinforcement in a three-neuron network exhibiting associative plasticity,” Eur. J. Neurosci., 19, No. 2, 227–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Balaban, P. M., Roshchin, M., Timoshenko, A. K., et al., “Nitric oxide is necessary for labilization of a consolidated context memory during reconsolidation in terrestrial snails,” Eur. J. Neurosci., 40, No. 6, 2963–70 (2014).

    Article  PubMed  Google Scholar 

  • Balaban, P. M., Vehovszky, A., Maximova, O. A., and Zakharov, I. S., “Effect of 5,7-DHT on the food-aversive conditioning in the snail Helix lucorum, L.,” Brain Res., 404, No. 1–2, 201–210 (1987).

    Article  CAS  PubMed  Google Scholar 

  • Besnard, A., Caboche, J., and Laroche, S., “Reconsolidation of memory: a decade of debate,” Prog. Neurobiol., 99, No. 1, 61–80 (2012).

    Article  PubMed  Google Scholar 

  • Bicker, G. and Hahnlein, I., “Long-term habituation of an appetitive reflex in the honeybee,” Neuroreport, 6, No. 1, 54–6 (1994).

    Article  CAS  PubMed  Google Scholar 

  • Bonin, R. P. and De Koninck, Y., “A spinal analog of memory re-consolidation enables reversal of hyperalgesia,” Nat. Neurosci., 17, No. 8, 1043–1045 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonin, R. P. and De Koninck, Y., “Reconsolidation and the regulation of plasticity: moving beyond memory,” Trends Neurosci., pii: S0166-2236, No. 15, 0097-1 (2015).

  • Bouton, M. E., “Context and behavioral processes in extinction,” Learn. Mem., 11, 485–494 (2004).

    Article  PubMed  Google Scholar 

  • Bouton, M. E., “Context, ambiguity, and unlearning: Sources of relapse after behavioral extinction,” Biol. Psychiatry, 52: 976–987 (2002).

    Article  PubMed  Google Scholar 

  • Cai, D., Pearce K., Chen, S., and Glanzman, D. L., “Reconsolidation of long-term memory in Aplysia,” Curr. Biol., 22, No. 19, 1783–1788 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Da Silva, W. C., Cardoso, G., Bonini, J. S., et al., “Memory reconsolidation and its maintenance depend on L-voltage-dependent calcium channels and CaMKII functions regulating protein turnover in the hippocampus,” Proc. Natl. Acad. Sci. USA, 110, No. 16, 6566–6570 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • de Oliveira Alvares, L., Pasqualini Genro, B., Diehl, F., et al., “Opposite action of hippocampal CB1 receptors in memory reconsolidation and extinction,” Neuroscience, 154, No. 4, 1648–1655 (2008).

    Google Scholar 

  • Debiec, J., Bush, D. E., and LeDoux, J. E., “Noradrenergic enhancement of reconsolidation in the amygdala impairs extinction of conditioned fear in rats – a possible mechanism for the persistence of traumatic memories in PTSD,” Depress. Anxiety, 28, No. 3, 186–193 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  • Debiec, J., LeDoux, J. E., and Nader, K., “Cellular and systems reconsolidation in the hippocampus,” Neuron, 36, No. 3, 527–538 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Duvarci, S., Mamou, C. B., and Nader, K., “Extinction is not a sufficient condition to prevent fear memories from undergoing reconsolidation in the basolateral amygdala,” Eur. J. Neurosci., 24, No. 1, 249–260 (2006).

    Article  PubMed  Google Scholar 

  • Eisenberg, M. and Dudai, Y., “Reconsolidation of fresh, remote, and extinguished fear memory in Medaka: old fears don’t die,” Eur. J. Neurosci., 20, No. 12, 33973403 (2004).

    Article  Google Scholar 

  • Eisenberg, M., Kobilo, T., Berman, D. E., and Dudai, Y., “Stability of retrieved memory: inverse correlation with trace dominance,” Science, 301: 1102–1104 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Eisenhardt, D. and Menzel, R., “Extinction learning, reconsolidation and the internal reinforcement hypothesis,” Neurobiol. Learn. Mem., 87, No. 2, 167–173 (2007).

    Article  PubMed  Google Scholar 

  • Finnie, P. S. and Nader, K., “The role of metaplasticity mechanisms in regulating memory destabilization and re-consolidation,” Neurosci. Biobehav. Rev., 36, No. 7, 1667–1707 (2012).

    Article  PubMed  Google Scholar 

  • Flavell, C. R. and Lee, J. L., “Reconsolidation and extinction of an appetitive Pavlovian memory,” Neurobiol. Learn. Mem., 104, 25–31 (2013).

    Article  PubMed  Google Scholar 

  • Flavell, C. R., Lambert, E. A., linters, B. D., and Bredy, T. W., “Mechanisms governing the reactivation-dependent destabilization of memories and their role in extinction,” Front. Behav. Neurosci., 7, 214 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseca, R., Vabulas, R. M., Hartl, F. U., et al., “A balance of protein synthesis and proteasome-dependent degradation determines the maintenance of LTP,” Neuron, 52, No. 2, 239–45 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Frankland, P. W., Ding, H. K., Takahashi, E., et al., “Stability of recent and remote contextual fear memory,” Learn. Mem., 13, No. 4, 451–457 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gainutdinova, T. H., Tagirova, R. R., Ismailova, A. I., et al., “Reconsolidation of a context long-term memory in the terrestrial snail requires protein synthesis,” Learn. Mem., 12, No. 6, 620–625 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  • Galanina, G. M., Zakharov, I. S., Maksimova, O. A., and Balaban, P. M., “The role of the giant serotonin-containing cell in the cerebral ganglion of the common snail in organizing food-procuring behavior,” Zh. Vyssh. Nerv. Deyat., 36, No. 1, 110–115 (1986).

    CAS  Google Scholar 

  • Gordon, W. C., “Susceptibility of a reactivated memory to the effects of strychnine: a time-dependent phenomenon,” Physiol. Behav., 18, No. 1, 95–99 (1977).

    Article  CAS  PubMed  Google Scholar 

  • Grigor’yan, G. A. and Markevicz, V. A, “Memory consolidation, reactivation and reconstruction,” Zh. Vyssh. Nerv. Deyat., 64, No. 2, 123–136 (2014).

    Google Scholar 

  • Hammer, M., “An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees,” Nature, 366, 59–64 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Hegde, A. N., Haynes K. A., Bach, S. V., and Beckelman, B. C., “Local ubiquitin-proteasome-mediated proteolysis and long-term synaptic plasticity,” Front. Mol. Neuroscience, 7, 96 (2014).

    Article  Google Scholar 

  • Hu, J. Y. and Schacher, S., “Persistent long-term facilitation at an identified synapse becomes labile with activation of short-term heterosynaptic plasticity,” J. Neurosci., 34, No. 14, 4776–4785 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Isaacson, J. S. and Scanziani, M., “How inhibition shapes cortical activity,” Neuron, 72, No. 2, 231–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarome, T. J., Werner, C. T., Kwapis, J. L., and Helmstetter, F. J., “Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala,” PLoS One, 6, No. 9, e24349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Kwon, J. T., Kim, H. S., et al., “Memory recall and modifications by activating neurons with elevated CREB,” Nat. Neurosci., 17, No. 1, 65–72 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Kroes, M. C. and Fernández, G., “Dynamic neural systems enable adaptive, flexible memories,” Neurosci. Biobehav. Rev., 36, No. 7, 1646–1666 (2012).

    Article  PubMed  Google Scholar 

  • Lattal, K. M., and Abel, T., “Behavioral impairments caused by injections of the protein synthesis inhibitor anisomycin after contextual retrieval reverse with time,” Proc. Natl. Acad. Sci. USA, 101, No. 13, 4667–4672 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. L., “Memory reconsolidation mediates the strengthening of memories by additional learning,” Nat. Neurosci., 11, No. 11, 1264–1266 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lee, J. L., “Memory reconsolidation mediates the updating of hippocampal memory content,” Front. Behav. Neurosci., 4, 168 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, J. L., “Reconsolidation: maintaining memory relevance,” Trends Neurosci., 32, No. 8, 413–420 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. L., Milton, A. L., and Everitt, B. J., “Reconsolidation and extinction of conditioned fear inhibition and potentiation,” J. Neurosci., 26, No. 39, 10051–10056 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. H., Choi, J. H., Lee, N., et al., “Synaptic protein degradation underlies destabilization of retrieved fear memory,” Science, 319, No. 5867, 1253–1256 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Lee, S. H., Kwak, C., Shim, J., et al., “A cellular model of memory reconsolidation involves reactivation-induced destabilization and restabilization at the sensorimotor synapse in Aplysia,” Proc. Natl. Acad. Sci. USA, 109, No. 35, 14200–14205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemak, M. S., Bravarenko N. I., Bobrov, M., Y., et al., “Cannabinoid regulation in identified synapse of terrestrial snail,” Eur. J. Neurosci., 26, No. 11, 3207–3214 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Litvin, O. O. and Anokhin K. V., “The mechanisms of memory reorganization during the retrieval of acquired behavioral experience in chicks: the effects of protein synthesis blockade in the brain,” Zh. Vyssh. Nerv. Deyat., 49, No. 4, 554–65 (1999).

    CAS  Google Scholar 

  • Mactutus, C. F., Riccio, D. C., and Ferek, J. M., “Retrograde amnesia for old (reactivated) memory: Some anomalous characteristics,” Science, 204: 1319–1320 (1979).

    Article  CAS  PubMed  Google Scholar 

  • Malyshev, A. Y. and Balaban, P. M., “Identification of mechanoafferent neurons in terrestrial snail: response properties and synaptic connections,” J. Neurophysiol., 87, No. 5, 2364–2371 (2002).

    PubMed  Google Scholar 

  • Meyer, D. R., “Access to engrams,” Am. Psychol., 27, 124–133 (1972).

    Article  CAS  PubMed  Google Scholar 

  • Misanin, J. R., Miller, R. R., and Lewis, D. J., “Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace,” Science, 160, No. 827, 554–555 (1968).

    Article  CAS  PubMed  Google Scholar 

  • Monfils, M. H., Cowansage K. K., Klann, E., and LeDoux, J. E., “Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories,” Science, 324, No. 5929, 951–955 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nader, K. and Hardt, O., “A single standard for memory: the case for reconsolidation,” Nat. Rev. Neurosci., 10, No. 3, 224–234 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Nader, K., “Memory traces unbound,” Trends Neurosci., 26, 65–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Nader, K., Schafe, G. E., and Le Doux, J. E., “Fear memories require protein synthesis in the amygdale for reconsolidation after retrieval,” Nature, 406, 722–726 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Nikitin, E. S. and Balaban, P. M., “Functional organization and structure of the serotonergic neural network of terrestrial snail,” Zh. Vyssh. Nerv. Deyat., 61, No. 6, 750–762 (2011).

    CAS  Google Scholar 

  • Nikitin, E. S., Balaban, P. M., and Kemenes, G., “Nonsynaptic plasticity underlies a compartmentalized increase in synaptic efficacy after classical conditioning,” Curr. Biol., 23, No. 7, 614–619 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Osan, R., Tort, A. B., and Amaral O. B., “A mismatch-based model for memory reconsolidation and extinction in at-tractor networks,” PLoS One, 6, No. 8, e23113 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pavlov, I. P., Conditioned Reflexes: An investigation of the Physiological Activity of the Cerebral Cortex, Oxford Univ. Press, Oxford (1927).

    Google Scholar 

  • Pavlov, I. P., Twenty Years of Experience in the Objective Study of Higher Nervous Activity (behavior) in Animals. Conditioned Reflexes, Gosizdat (1923).

  • Pedreira, M. E. and Maldonado, H., “Protein synthesis subserves reconsolidation or extinction depending on reminder duration,” Neuron, 38, 863–869 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Pedreira, M. E., Perez-Cuesta, L. M., and Maldonado, H., “Mismatch between what is expected and what actually occurs triggers memory reconsolidation or extinction,” Learn. Mem., 11, No. 5, 579–585 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  • Power, A. E., Berlau, D., J. McGaugh, J. L., and Steward, O., “Anisomycin infused into the hippocampus fails to block ‘reconsolidation’ but impairs extinction: the role of re-exposure duration,” Learn. Mem., 13, No. 1, 27–34 (2006).

  • Prado-Alcalá, R. A., Díaz del Guante, M. A., Garín-Aguilar, M. E., et al., “Amygdala or hippocampus inactivation after retrieval induces temporary memory deficit,” Neurobiol. Learn. Mem., 86, No. 2, 144–149 (2006).

    Article  PubMed  Google Scholar 

  • Przybyslawski, J., Roullet, P., Sara, S. J., “Attenuation of emotional and nonemotional memories after their reactivation: role of beta adrenergic receptors,” J. Neurosci., 19: 6623–6628 (1999).

    CAS  PubMed  Google Scholar 

  • Przybyslawski, J., Sara, S. J., “Reconsolidation of memory after its reactivation,” Behav. Brain Res., 84, No. 1–2, 241–246 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Quirk, G. J. and Mueller, D., “Neural mechanisms of extinction learning and retrieval,” Neuropsychopharmacology, 33, No. 1, 56–72 (2008).

    Article  PubMed  Google Scholar 

  • Ramaswami, M., “Network plasticity in adaptive filtering and behavioral habituation,” Neuron, 82, No. 6, 1216–1229 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Reichelt, A. C. and Lee, J. L., “Appetitive Pavlovian goal-tracking memories reconsolidate only under specific conditions,” Learn. Mem., 20, No. 1, 51–60 (2012).

    Article  PubMed  Google Scholar 

  • Ren Z. Y., Liu, M. M., Xue, Y. X., et al., “A critical role for protein degradation in the nucleus accumbens core in cocaine reward memory,” Neuropsychopharmacology, 38, No. 5, 778–790 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rescorla, R. A., “Spontaneous recovery,” Learn. Mem., 11, No. 5, 501–509 (2004).

    Article  PubMed  Google Scholar 

  • Roesler, R., Reolon, G. K., Maurmann, N., et al., “A phosphodiesterase 4-controlled switch between memory extinction and strengthening in the hippocampus,” Front. Behav. Neurosci., 8, 91 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Runyan, J. D. and Dash, P. K., “Inhibition of hippocampal protein synthesis following recall disrupts expression of episodic-like memory in trace conditioning,” Hippocampus, 15, No. 3, 333–339 (2005).

    Article  PubMed  Google Scholar 

  • Sara, S. J., “Strengthening the shaky trace through retrieval,” Nat. Rev. Neurosci., 1, No. 3, 212–213 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Sokolov, E. N., “Higher nervous functions; the orienting reflex,” Annu. Rev. Physiol., 25, 545–580 (1963).

    Article  CAS  PubMed  Google Scholar 

  • Sokolov, E. N., Neural Mechanisms of Memory and Learning, Moscow (1981).

  • Sol Fustiñana, M., de la Fuente, V., Federman, N., et al., “Protein degradation by ubiquitin-proteasome system in formation and labilization of contextual conditioning memory,” Learn. Mem., 21, No. 9, 478–487 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  • Stollhoff, N., Menzel, R., and Eisenhardt, D., “Spontaneous recovery from extinction depends on the reconsolidation of the acquisition memory in an appetitive learning paradigm in the honeybee (Apis mellifera),” J. Neurosci., 25, No. 18, 4485–4492 (2005).

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, A., Josselyn, S. A., Frankland, P. W., et al., “Memory reconsolidation and extinction have distinct temporal and biochemical signatures,” J. Neurosci., 24: 4787–4795 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Thorpe, W. H., Learning and Instinct in Animals, Methuen, London (1963).

    Google Scholar 

  • Tian, S., Huang, F., Li P, et al., “Nicotine enhances contextual fear memory reconsolidation in rats,” Neurosci. Lett., 487, No. 3, 368–371 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Tronson, N. C., Wiseman, S. L., Olausson, P., and Taylor, J. R., “Bidirectional behavioral plasticity of memory reconsolidation depends on amygdalar protein kinase A,” Nat. Neuroscience, 9, No. 2, 167–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. H., de Oliveira Alvares, L., and Nader, K., “Cellular and systems mechanisms of memory strength as a constraint on auditory fear reconsolidation,” Nat. Neurosci., 12, No. 7, 905–912 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Winters, B. D., Tucci, M. C., and DaCosta-Furtado, M., “Older and stronger object memories are selectively destabilized by reactivation in the presence of new information,” Learn. Mem., 16, No. 9, 545–553 (2009).

    Article  PubMed  Google Scholar 

  • Winters, B. D., Tucci, M. C., Jacklin D. L., et al., “On the dynamic nature of the engram: evidence for circuit-level reorganization of object memory traces following reactivation,” J. Neurosci., 31, No. 48, 17719–17728 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Wolf, F., Engelken, R., Puelma-Touzel, M., et al., “Dynamical models of cortical circuits,” Curr. Opin. Neurobiol., 25, 228–236 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Zakharov, L. S., Ierusalimsky, V. N., and Balaban, P. M., “Pedal serotonergic neurons modulate the synaptic input of withdrawal interneurons in Helix,” Invertebrate Neurosci., 1, 41–52 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Balaban.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 65, No. 5, pp. 564–576, September–October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyuzina, A.B., Balaban, P.M. Extinction and Reconsolidation of Memory. Neurosci Behav Physi 47, 74–82 (2017). https://doi.org/10.1007/s11055-016-0367-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0367-x

Keywords

Navigation