Skip to main content
Log in

Modeling Depression in Animals: Behavior as the Basis for the Methodology, Assessment Criteria, and Classification

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

This review analyzes current progress in the modeling of depressive disorders in animals. The criteria and classification systems for existing models are considered, as are approaches to assessing the validity of models. Despite the use of numerous approaches to modeling depressive states, based not only on impairments to the motivational mechanisms of the brain, but also on impairments to the emotional mechanisms, no satisfactory model creating a stable depressive state has yet been developed. Nonetheless, the diversity of existing models is undoubtedly positive, as it provides for targeted studies of individual neurobiological mechanisms and patterns of development of depressive states in humans, as well as studies of the mechanisms of action and predictions of the pharmacological profiles of potential drugs for the treatment of depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anacker, C., Cattaneo, A., Luoni, A., et al., “Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis,” Neuropsychopharmacology, 38, No. 5, 872–883 (2013).

  • Araragi, N. and Lesch, K. P., “Serotonin (5-HT) in the regulation of depression-related emotionality: insight from 5-HT transporter and tryptophan hydroxylase-2 knockout mouse models,” Curr. Drug Targets, 14, No. 5, 549–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Ashdown, H., Dumont, Y., Ng, M., et al., “The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia,” Mol. Psychiatry, 11, 47–55 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Baharnoori, M., Brake, W. G., and Srivastava, L. K., “Prenatal immune challenge induces developmental changes in the morphology of pyramidal neurons of the prefrontal cortex and hippocampus in rats,” Schizophr. Res., 107, 99–109 (2009).

    Article  PubMed  Google Scholar 

  • Bardo, M. T. and Bevins, R. A., “Conditioned place preference: what does it add to our preclinical understanding of drug reward?” Psychopharma cology, 153, No. 1, 31–43 (2000).

  • Belzung, C. and Lemoine, M., “Criteria of validity for animal models of psychiatric disorders: focus on anxiety disorders and depression,” Biol. Mood Anxiety Disord., No. 1, 9, (2011) doi: 10.1186/2045-5380-1-9.

  • Berton, O., McClung, C. A., Dileone, R. J., et al., “Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress,” Science, 311, No. 5762, 864–868 (2006).

  • Breuillaud, L., Rossetti, C., Meylan, E. M., et al., “Deletion of CREBregulated transcription coactivator 1 induces pathological aggression, depression-related behaviors, and neuroplasticity genes dysregulation in mice,” Biol. Psychiatry, 72, No. 7, 528–536 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Burke, T. F., Advani, T., Adachi, M., et al., “Sensitivity of hippocampal 5-HT1A receptors to mild stress in BDNF-deficient mice,” Int. J. Neuropsychopharmacol., 16, No. 3, 631–645 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Buwalda, B., de Boer, S. E, Schmidt, E. D., et al., “Long-lasting deficient dexamethasone suppression of hypothalamic-pituitary adrenocortical activation following peripheral CRF challenge in socially defeated rats,” J. Neuroendocrinol., 11, No. 7 513–520 (1999).

  • Calabrese, F., Guidotti, G., Middelman, A., et al., “Lack of serotonin transporter alters BDNF expression in the rat brain during early postnatal development,” Mol. Neurobiol., 48, No. 1, 244–256 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Catena-Dell’Osso, M., Rotella, F., Dell’Osso, A., et al., “Inflammation, serotonin and major depression,” Curr. Drug Targets, 14, No. 5, 571–577 (2013).

    Article  PubMed  Google Scholar 

  • Coe, C. L., Rosenberg L. T, and Levine, S., “Effect of maternal separation on the complement system and antibody responses in infant primates,” Int. J. Neurosci., 40, No. 3–4, 289–302 (1988).

    Article  CAS  PubMed  Google Scholar 

  • Cui, K., Ashdown, H., Luheshi, G. N., and Boksa, P., “Effects of prenatal immune activation on hippocampal neurogenesis in the rat,” Schizophr. Res., 113, 288–297 (2009).

    Article  PubMed  Google Scholar 

  • Dalitz, P., Harding, R., Rees, S. M., and Cock, M. L., “Prolonged reductions in placental blood flow and cerebral oxygen delivery in preterm fetal sheep exposed to endotoxin: possible factors in white matter injury alter acute infection,” J. Soc. Gynecol. Investig., 10, 283–290 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Dedic, N., Walser, S. M., Jan M. and Deussing, J. M., “Mouse Models of Depression,” in: Psychiatric Disorders – Trends and Developments, InTech, 10/2011, ISBN: 978-953-307-745-751.

  • Duman, R. S. and Monteggia, L. M., “A neurotrophic model for stressrelated mood disorders,” Biol. Psychiatry, 59, No. 12, 1115–1127 (2006).

    Article  Google Scholar 

  • Einon, D., Morgan, M. J., and Sahakian, B. J., “The development of intersession habituation and emergence in socially reared and isolated rats,” Dev. Psychobiol., 8, No. 6, 553–559 (1975).

    Article  CAS  PubMed  Google Scholar 

  • Entringer, S., Kumsta, R., Nelson, E. L., et al., “Influence of prenatal psychosocial stress on cytokine production in adult women,” Dev. Psychobiol., 50, 579–587 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epp, J. R., Beasley, C. L., and Galea, L. A., “Increased hippocampal neurogenesis and p21 expression in depression: dependent on antidepressants, sex, age, and antipsychotic exposure,” Neuropsychopharmacology, 38, No. 11, 2297–2306 (2013).

  • Esumi, S., Kawasaki, Y., Nakamoto, A., et al., “Differential effects of nomifensine and imipramine on motivated behavior in the runway model of intracranial self-stimulation,” Eur. J. Pharmacol., pii: S0014-2999(13)0078700785, doi: 10.1016/j.ejphar.2013.09.079.

  • Fernando, A., B. P. and Robbins T, W., “Animal models of neuropsychiatric disorders,” Ann. Rev. Clin. Psychol., 7, 39–61 (2011).

  • Ferrés-Coy, A., Pilar-Cuellar, F., Vidal, R., et al., “RNAi-mediated serotonin transporter suppression rapidly increases serotonergic neurotransmission and hippocampal neurogenesis,” Transl. Psychiatry, 3, e211 (2013), doi: 10.1038/tp.2012.135.

  • Forder, J. R. and Tymianski, M., “Postsynaptic mechanisms of excitotoxicity: Involvement of postsynaptic density proteins, radicals, and oxidant molecules,” Neuroscience, 158, 293–300 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Fortier, M. E., Joober, R., Luheshi, G. N., and Boksa, P., “Maternal exposure to bacterial endotoxin during pregnancy enhances amphetamine-induced locomotion and startle responses in adult rat offspring,” J. Psychiatr. Res., 38, 335–345 (2004).

    Article  PubMed  Google Scholar 

  • Gainetdinov, R. R., Jones, S. R., and Caron, M. G., “Functional hyperdopaminergia in dopamine transporter knock-out mice,” Biol. Psychiatry, 46, No. 3, 303–311 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Geyer, M. A. and Markou, A., “Animal models of psychiatric disorders,” in: Psychopharmacology: the Fourth Generation of Progress, Bloom, F. and Kupfer, D. (eds.) Raven Press, New York (1995), pp. 787–798.

    Google Scholar 

  • Grigor’yan, G. A., “Interaction of the signal motivational and executive components of the conditioned refl ex,” Zh. Vyssh. Nerv. Deyat., 40, No. 4, 629–642 (1990).

    Google Scholar 

  • Grigor’yan, G. A., “Memory and depression,” Zh. Vyssh. Nerv. Deyat., 56, No. 4, 556–570 (2006).

    Google Scholar 

  • Grigor’yan, G. A., Dygalo, N. N., Gekht, A. B., et al., “Molecular-cellular mechanisms of depression. The role of glucocorticoids, cytokines, and neurotrophic factors in the genesis of depressive disorders,” Usp. Fiziol. Nauk., 45, No. 2, 3–19 (2014).

    Google Scholar 

  • Haenisch, B. and Bönisch, H., “Depression and antidepressants: insights from knockout of dopamine, serotonin or noradrenaline re-uptake transporters,” Pharmacol. Ther., 129, No. 3, 352–368 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Haenisch, B., Bilkei-Gorzo, A., Caron, M. G., and Misch, H., “Knockout of the norepinephrine transporter and pharmacologically diverse antidepressants prevent behavioral and brain neurotrophin alterations in two chronic stress models of depression,” J. Neurochem., 111, No. 2, 403–416 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hava, G., Vered, L., Yael, M., et al., “Alterations in behavior in adult offspring mice following maternal inflammation during pregnancy,” Dev. Psychobiol., 48, 162–168 (2006).

    Article  PubMed  Google Scholar 

  • Hennessy, M. B., Deak T, and Schiml-Webb, P. A., “Early attachment figure separation and increased risk for later depression: potential mediation by proinflammatory processes,” Neurosci. Biobehav. Rev., 34, No. 6, 782–790 (2010).

  • Hennessy, M. B., Long, S. J., Nigh C. K., et al., “Effects of peripherally administered corticotropin-releasing factor (CRF) and a CRF antagonist: Does peripheral CRF activity mediate behavior of guinea pig pups during isolation?” Behav. Neurosci., 109, 1137–1145 (1995).

    Article  CAS  PubMed  Google Scholar 

  • Higley, J. D., Suomi, S. J., and Linnoila, M., “A longitudinal assessment of CSF monoamine metabolite and plasma cortisol concentrations in young rhesus monkeys,” Biol. Psychiatry, 32, No. 2, 127–145 (1992).

    Article  CAS  PubMed  Google Scholar 

  • Holmes, A., Yang, R. J., Murphy, D. L., and Crawley, J. N., “Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter,” Neuropsychopharmacology, 27, No. 6, 914–923 (2002).

  • Holsboer, F. and Ising, M., “Central CRH system in depression and anxiety-evidence from clinical studies with CRH1 receptor antagonists,” Eur. J. Pharmacol., 583, No. 2–3, 350–357 (2008).

    Article  CAS  PubMed  Google Scholar 

  • Ilias, I. and Mastorakos, G., “The emerging role of peripheral corticotropin-releasing hormone (CRH),” J. Endocrinol. Invest., 26, No. 4, 364–371 (2003).

    Article  CAS  PubMed  Google Scholar 

  • Jakubcakova, V., Flachskamm C., Deussing, J. M., and Kimura, M., “Deficiency of corticotropin-releasing hormone type-2 receptor alters sleep responses to bacterial lipopolysaccharide in mice,” Brain Behav. Immun., 25, No. 8, 1626–1636 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Keeler, J. F. and Robbins, T. W., “Translating cognition from animals to humans,” Biochem. Pharmacol., 81, No. 12, 1356–1366 (2011).

    Article  CAS  PubMed  Google Scholar 

  • Kong, H., Zeng X, N., Fan, Y., et al., “Aquaporin-4 knockout exacerbates corticosterone-induced depression by inhibiting astrocyte function and hippocampal neurogenesis,” CNS Neurosci. Ther. (2014), doi: 10.1111/cns.12222.

  • Koob, G. F., Heinrichs, S. C., and Britton, K., “Animal models of anxiety disorders,” in: The American Psychiatric Press Textbook of Psychopharmacology, Schatzberg, A. F. and Nemeroff, C. B. (eds.), American Psychiatric Press, Washington D.C., London (1998), 2nd ed., pp. 133–144.

  • Kubera, M., Curzytek K., Duda, W., et al., “A new animal model of (chronic) depression induced by repeated and intermittent lipopolysaccharide administration for 4 months,” Brain Behav. Immun., 31, 96–104 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Kudryavtseva, N. N., Avgustinovich, D. F., Kovalenko, I. L., and Bondar’, N. P., “Development of anhedonia in response to negative experience of social interactions in male mice,” Ros. Fiziol. Zh., 92, No. 3, 351–361 (2006).

  • Lawson, M. A., Parrott, J. M., McCusker, R. H., et al., “Intracerebroventricular administration of lipopolysaccharide induces indoleamine-2,3-dioxygenase-dependent depression-like behaviors,” Neuroin flammation, 10, No. 1, 87–97 (2013).

  • Lehmann, M. L., Mustafa T, Eiden, A. M., et al., “PACAP-defi cient mice show attenuated corticosterone secretion and fail to develop depressive behavior during chronic social defeat stress,” Psychoneuroendocrinology, 38, No. 5, 702–715 (2013).

  • Li, B., Arime, Y., Hall, F. S., et al., “Impaired spatial working memory and decreased frontal cortex BDNF protein level in dopamine transporter knock-out mice,” Eur. J. Pharmacol., 628, No. 1–3, 104–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Lin, D., Bruijnzeel, A. W., Schmidt, P., and Markou, A., “Exposure to chronic mild stress alters thresholds for lateral hypothalamic stimulation reward and subsequent responsiveness to amphetamine,” Neuroscience, 114, No. 4, 925–933 (2002).

  • Liverman, C. S., Kaftan, H. A., Cui, L., et al., “Altered expression of proinflammatory and developmental genes in the fetal brain in a mouse model of maternal infection,” Neurosci. Lett., 399, 220–225 (2006).

    Article  CAS  PubMed  Google Scholar 

  • Lucki, J., “The forced swimming test as a model for core and component behavioral effects of antidepressant drugs,” Behav. Pharmacol., 8, No. 6–7, 523–532 (1997).

    Article  CAS  PubMed  Google Scholar 

  • MacQueen, G. M., Ramakrishnan K., Croll, S. D., et al., “Performance of heterozygous brain-derived neurotrophic factor knockout mice on behavioral analogues of anxiety, nociception, and depression,” Behav. Neurosci., 115, No. 5, 1145–1153 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Maier, S. F., “Learned helplessness and animal models of depression,” Prog. Neuropsychopharmacol. Biol. Psychiatry,” 8, No. 3, 435–446 (1984).

  • Martin, P., Soubrié, P., and Puech, A. J., “Reversal of helpless behavior by serotonin uptake blockers in rats,” Psychopharmacology (Berl.), 101, No. 3, 403–407 (1990).

    Article  CAS  Google Scholar 

  • McKinney, W. T. and Bunney, W. E., “Animal models of depression,” Arch. Gen. Psychiat., 127, 240–248 (1969).

    Article  Google Scholar 

  • Meerlo, P., Overkamp, G. J., Daan, S., et al., “Changes in behaviour and body weight following a single or double social defeat in rats,” Stress, 1, No. 1, 21–32 (1996).

  • Miller, A. H., Haroon, E., Raison, C. L., and Felger, J. C., “Cytokine targets in the brain: impact on neurotransmitters and neurocircuits,” Depress. Anxiety, 30, No. 4, 297–306 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller, M. B. and Holsboer, F., “Mice with mutations in the H PA-system as models for symptoms of depression,” Biol. Psychiatry, 59, No. 12, 1104–1115 (2006).

    Article  PubMed  Google Scholar 

  • Montañez, S., Munn, J. L., Owens, W. A., et al., “5-HT1B receptor modulation of the serotonin transporter in vivo: Studies using KO mice,” Neurochem. Int., 73, 127–131 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  • Monteggia, L. M., Barrot, M., Powell, C. M., et al., “Essential role of brain-derived neurotrophic factor in adult hippocampal function,” Proc. Natl. Acad. Sci. USA, 101, No. 29, 10827–10832 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagayama, H., Hingtgen, J. N., and Aprison, M. H., “Pre- and postsynaptic serotonergic manipulations in an animal model of depression,” Pharmacol. Biochem. Behav., 13, No. 4, 575–579 (1980).

    Article  CAS  PubMed  Google Scholar 

  • Nestler, E. J. and Hyman, S. E., “Animal models of neuropsychiatric disorders,” Nat. Neurosci., 13, No. 10, 1161–1169 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen, C. K., Arnt, J., and Sánchez, C., “Intracranial self-stimulation and sucrose intake differ as hedonic measures following chronic mild stress: interstrain and interindividual differences,” Behav. Brain Res., 107, No. 12, 21–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Papp, M., Willner, P., and Muscat, R., “An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress,” Psychopharmacology, 104, No. 2, 255–259 (1991).

  • Perona M. T, Waters, S., Hall, F. S., et al., “Animal models of depression in dopamine, serotonin, and norepinephrine transporter knockout mice: prominent effects of dopamine transporter deletions,” Behav Pharmacol., 19, No. 5–6, 566–574 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plotsky, P. M. and Meaney, M. J., “Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats,” Brain Res. Mol. Brain Res., 18, No. 3, 195–200 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Porsolt, R. D., Le Pichon, M., and Jalfre, M., “Depression: a new animal model sensitive to antidepressant treatments,” Nature, 266, No. 5604, 730–732 (1977).

  • Pournajafi -Nazarloo, H., Partoo, L., Yee, J., et al., “Effects of social isolation on mRNA expression for corticotrophin-releasing hormone receptors in prairie voles,” Psychoneuroendocrinology, 36, No. 6, 780–789 (2011).

  • Pryce, C. R., Rüedi-Bettschen, D., Dettling, A. C., et al., “Long-term effects of early-life environmental manipulations in rodents and primates: Potential animal models in depression research,” Neurosci. Biobehav. Rev., 29, No. 4–5, 649–674 (2005).

    Article  PubMed  Google Scholar 

  • Psotta, L., Lessmann, V., and Endres, T., “Impaired fear extinction learning in adult heterozygous BDNF knock-out mice,” Neurobiol Learn. Mem., 103, 34–38 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Richardson-Jones, J. W., Craige, C. P., Guiard, B. P., et al., “5-HT1A autoreceptor levels determine vulnerability to stress and response to antidepressants,” Neuron, 65, 40–52 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rios, M., Fan, G., Fekete, C., et al., “Conditional deletion of brain-derived neurotrophic factor in the postnatal brain leads to obesity and hyperactivity,” Mol. Endocrinol., 15, No. 10, 1748–1757 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Romero, E., Ali, C., Molina-Holgado, E., et al., “Neurobehavioral and immunological consequences of prenatal immune activation in rats,” Neuropsychopharmacology, 32, 1791–1804 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Sakata, K., Martinowich K., Woo, N. H., et al., “Role of activity-dependent BDNF expression in hippocampal-prefrontal cortical regulation of behavioral perseverance,” Proc. Natl Acad. Sci. USA, 110, No. 37, 15,103–15,108 (2013).

    Article  CAS  Google Scholar 

  • Sarter, M. and Bruno, J. P., “Animal models in biological psychiatry,” in: Biological Psychiatry, D’Haenen, H. A. H., den Boer, J. A., and Willner, P. (eds.), Wiley, Chichester (2002), Vol. 1, pp. 37–44.

  • Sherman, A. D., Sacquitne, J. L., and Petty, F., “Specificity of the learned helplessness model of depression,” Pharmacol. Biochem. Behav., 16, No. 3, 449–454 (1982).

    Article  CAS  PubMed  Google Scholar 

  • Shi, L., Fatemi, S. H., Sidwell, R. W., and Patterson, P. H., “Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring,” J. Neurosci., 23, No. 1, 297–302 (2003).

    PubMed  Google Scholar 

  • Sillaber, I., Rammes, G., Zimmermann, S., et al., “Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH 1 receptors,” Science, 296, No. 5569, 931–933 (2002).

  • Silverman, M. N. and Sternberg, E. M., “Glucocorticoid regulation of inflammation and its behavioral and metabolic correlates: from HPA axis to glucocorticoid receptor dysfunction,” Ann. N. Y. Acad. Sci., 1261, 55–63 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skelin, I., Kovačević, T., and Diksica, M., “Neurochemical and behavioural changes in rat models of depression,” Croat. Chem. Acta, 84, No. 2, 287–299 (2011).

    Article  CAS  Google Scholar 

  • Solomon, M. B., Furay, A. R., Jones, K., et al., “Deletion of forebrain glucocorticoid receptors impairs neuroendocrine stress responses and induces depression-like behavior in males but not females,” Neuroscience, 203, 135–143 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Spielewoy, C., Roubert, C., Hamon, M., et al., “Behavioural disturbances associated with hyperdopaminergia in dopamine-transporter knockout mice,” Behav. Pharmacol., 11, 279–290 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St Laurent, R., Helm, S. R., and Glenn, M. J., “Reduced cocaine-seeking behavior in heterozygous BDNF knockout rats,” Neurosci. Lett., 544, 94–99 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steru, L., Chermat, R., Thierry, B., and Simon, P., “The tail suspension test: a new method for screening antidepressants in mice,” Psycho pharmacology (Berl.), 85, No. 3, 367–370 (1985).

    Article  CAS  Google Scholar 

  • Svenningsson, P., Kim, Y., Warner-Schmidt, J., et al., “p11 and its rote in depression and therapeutic responses to antidepressants,” Nat. Rev. Neurosci., 14, No. 10, 673–680 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tannenbaum, B., Tannenbaum, G. S., Sudom K., and Anisman, H., “Neurochemical and behavioral alterations elicited by a chronic intermittent stressor regimen: implications for allostatic load,” Brain Res.,. 953, No. 1–2, 82–92 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Thoeringer C. K., Henes K., Eder, M., et al., “Consolidation of remote fear memories involves corticotropin-releasing hormone (CRH) receptor type 1-mediated enhancement of AMPA receptor GluR1 signaling in the dentate gyrus,” Neuropsychopharmacology, 37, No. 3, 787–796 (2012).

  • Toth, M., Mikics, E., Tulogdi, A., et al., “Postweaning social isolation induces abnormal forms of aggression in conjunction with increased glucocorticoid and autonomic stress responses,” Horm. Behav., 60, No. 1, 28–36 (2011).

    Article  CAS  PubMed  Google Scholar 

  • van der Staay, F. J., “Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy,” Brain Res. Rev., 52, No. 1, 131–159 (2006).

    Article  PubMed  Google Scholar 

  • van Gaalen, M. M., Stenzel-Poore, M. P., Holsboer, F., and Steckler, T., “Effects of transgenic overproduction of CRH on anxiety-like behaviour,” Eur. J. Neurosci., 15, No. 12, 2007–2015 (2002).

    Article  PubMed  Google Scholar 

  • Walker A. K., Budac, D. P., Bisulco, S., et al., “NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice,” Neuropsychopharmacology, 38, No. 9, 1609–1616 (2013).

  • Weiss, I. C., Pryce, C. R., Jongen-Rêlo, A. L., et al., “Effect of social isolation on stress-related behavioural and neuroendocrine state in the rat,” Behav. Brain Res., 152, No. 2, 279–295 (2004).

    Article  CAS  PubMed  Google Scholar 

  • Willner, P., “Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS,” Neuropsychobiology, 52, No. 2, 90–110 (2005).

  • Willner, P., “The validity of animal models of depression,” Psychopharmacology, 83, No. 1, 1–16 (1984).

  • Willner, P., “Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation,” Psychopharmacology (Berl.), 134, No. 4, 319–29 (1997).

    Article  CAS  Google Scholar 

  • Willner, P., Moreau, J. L., Nielsen, C. K., et al., “Decreased hedonic responsiveness following chronic mild stress is not secondary to loss of body weight,” Physiol Behav., 60, No. 1, 129–134 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Winter, C., Djodari-Irani, A., Sohr, R., et al., “Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia,” Int. J. Neuropsychopharmacol., 12, No. 4, 513–524 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Wu, Y. C., Hill, R. A., Klug, M., and van den Buuse, M., “Sex-specific and region-specific changes in BDNF-TrkB signalling in the hippocampus of 5-HT1A receptor and BDNF single and double mutant mice,” Brain Res., 1452, 10–17 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Xing, B., Liu, P., Jiang, W. H., et al., “Effects of immobilization stress on emotional behaviors in dopamine D3 receptor knockout mice,” Behav. Brain Res., 243, 261–266 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Xu, F., Gainetdinov, R. R., Wetsel, W. C., et al., “Mice lacking the norepinephrine transporter are supersensitive to psychostimulants,” Nat. Neurosci., 3, No. 5, 465–471 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Grigor’yan.

Additional information

Translated from Zhurnal Vysshei Nervnoi Deyatel’nosti imeni I. P. Pavlova, Vol. 65, No. 6, pp. 643–660, November–December, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigor’yan, G.A., Gulyaeva, N.V. Modeling Depression in Animals: Behavior as the Basis for the Methodology, Assessment Criteria, and Classification. Neurosci Behav Physi 47, 204–216 (2017). https://doi.org/10.1007/s11055-016-0386-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-016-0386-7

Keywords

Navigation