Skip to main content
Log in

Development of Intermodule Interactions in Field 18 in Kittens Reared in Different Visual Environments: Orientation Modules

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

The primary visual cortex of mammals with well developed visual analyzers is characterized by functional modules whose postnatal development depends on a combination of internal genetic and external factors determined by the visual environment. Concordance in the operation of orientation columns in field 18 was studied with the aim of assessing the maturation of intermodular interactions in the visual cortex of kittens reared in conditions of rhythmic light stimulation at frequencies of 15 and 50 Hz (the RLS-15 and RLS-50 groups). Functional maps obtained by an optical mapping method using internal signals were used for correlation comparison of responses at different points of the cortex recorded in response to presentation of visual stimuli with different physical characteristics. The results were compared with those from control animals and kittens reared in complete darkness (the DARK group). Animals of the RLS-15 group showed significant decreases in the coefficient of correlation between the dynamics of the responses of neighboring orientation modules regardless of the distance between the modules concerned. Possible links between these impairments and the functions of interneuronal interactions in the visual cortex and the development of internal cortical rhythms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. V. Bondar’, E. E. Minakova, and R. S. Ivanov, “Use of optical mapping using an internal signal for testing the function of the visual cortex in mammals,” Optich. Zh., 78, No. 12, 17–22 (2011).

  2. V. S. Bugrova, R. S. Ivanov, and I. V. Bondar’, “Changes in the functional population response of the primary visual cortex of the cat in conditions of short-term injections of propofol on the background of constant drug perfusion,” Ros. Fiziol. Zh., 99, No. 4, 453–463 (2013).

  3. N. S. Merkuleva, R. S. Ivanov, and I. V. Bondar’, “Development of columns in field 18 in conditions of rhythmic light stimulation,” Sensor. Sistemy, 27, No. 4, 306–316 (2013).

  4. N. S. Merkul’eva, R. S. Ivanov, and I. V. Bondar’, “Binocular coactivation modulates the development of the functional module systems in the kitten visual cortex,” Zh. Vyssh. Nerv. Deyat., 65, No. 1, 1–5 (2015).

  5. A. M. Bastos, F. Briggs, H. J. Alitto, et al., “Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for gamma-band oscillations,” J. Neurosci., 34, 7639–7644 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. E. M. Callaway and L. C. Katz, “Emergence and refinement of clustered horizontal connections in cat striate cortex,” J. Neurosci., 10, 1134–1153 (1990).

    CAS  PubMed  Google Scholar 

  7. X.-J. Chen, M. J. Rasch, G. Chen, et al., “Binocular input coincidence mediates critical period plasticity in the mouse primary visual cortex,” J. Neurosci., 34, No. 8, 2940–2955 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. N. W. Daw, Visual Development, Springer, New York (2006).

    Google Scholar 

  9. P. Fries, S. Neuenschwander, A. K. Engel, et al., “Rapid feature selective neuronal synchronization through correlated latency shifting,” Nature Neurosci., 4, No. 2, 194–200 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. C. M. Gray, P. Konig, A. K. Engel, and W. Singer, “Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties,” Nature, 338, 334–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. M. M. Haglund, “Optical imaging of visual cortex epileptic foci and propagation pathways,” Epilepsia, 53, No. 1, Supplement, 87–97 (2012).

  12. G. Harding, P. Harding, and A. Wilkins, “Wind turbines, flicker, and photosensitive epilepsy: characterizing the flashing that may precipitate seizures and optimizing guidelines to prevent them,” Epilepsia, 49, 1095–1098 (2008).

    Article  PubMed  Google Scholar 

  13. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol., 160, 106–154 (1962).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Hübener, D. Shoham, A. Grinvald, and T. Bonhoeffer, “Spatial relationships among three columnar systems in cat area 17,” J. Neurosci., 17, 9270–9284 (1997).

    PubMed  Google Scholar 

  15. N. P. Issa, C. Trepel, and M. P. Stryker, “Spatial frequency maps in cat visual cortex,” J. Neurosci., 20, 8504–8514 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. V. A. Kalatsky and M. P. Stryker, “New paradigm for optical imaging: temporally encoded maps of intrinsic signal,” Neuron, 38, 529–545 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. J. Luebke and K. Albus, “Rapid rearrangement of intrinsic tangential connections in the striate cortex of normal and dark-reared kittens: lack of exuberance beyond the second postnatal week,” J. Comp. Neurol., 323, 42–58 (1992).

    Article  Google Scholar 

  18. H. J. Luhmann, W. Singer, and L. Martinez-Millan, “Horizontal interactions in cat striate cortex: I. Anatomical substrate and postnatal development,” Eur. J. Neurosci., 2, 344–357 (1990).

    Article  PubMed  Google Scholar 

  19. M. A. Pastor, J. Artieda, J. Arbizu, et al., “Human cerebral activation during steady-state visual-evoked responses,” J. Neurosci., 23, 11621–11627 (2003).

    CAS  PubMed  Google Scholar 

  20. N. L. Rochefort, P. Buzás, N. Quenech’du, et al., “Functional selectivity of interhemispheric connections in cat visual cortex,” Cereb. Cortex, 19, 2451–2465 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. F. Sengpiel, P. Stawinski, and T. Bonhoeffer, “Influence of experience on orientation maps in cat visual cortex,” Nat. Neurosci., 2, 727–732 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. W. Singer and C. M. Gray, “Visual feature integration and the temporal correlation hypothesis,” Annu. Rev. Neurosci., 18, 555–586 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. M. P. Stryker and S. L. Strickland, “Physiological segregation of ocular dominance columns depends on the pattern of afferent electrical activity,” Invest. Ophthalmol. Vis. Sci., 25, 278 (1984).

    Google Scholar 

  24. K. Topalkara, G. Alarcón, and C. D. Binnie, “Effects of flash frequency and repetition of intermittent photic stimulation on photoparoxysmal responses,” Seizure, 7, 249–255 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. R. Tusa, L. Palmer, and A. Rosenquist, “The retinotopic organization of area 17 (striate cortex) in the cat,” J. Comp. Neurol., 177, 213–236 (1978).

    Article  CAS  PubMed  Google Scholar 

  26. C. von der Malsburg and W. Schneider, “A neural cocktail-party processor,” Biol. Cybern., 54, 29–40 (1986).

    Article  PubMed  Google Scholar 

  27. M. Weliky and L. C. Katz, “Disruption of orientation tuning in visual cortex by artificially correlated neuronal activity,” Nature, 386, 680–685 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. A. J. Wilkins, P. Bonanni, V. Porciatti, and R. Guerrini, “Physiology of human photosensitivity,” Epilepsia, 45, 1–7 (2004).

    Article  Google Scholar 

  29. A. Wróbel, “Beta activity: a carrier for visual attention,” Acta Neurobiol. Exp., 60, 247–260 (2000).

    Google Scholar 

  30. A. Wróbel, A. Ghazaryan, M. Bekisz, et al., “Two streams of attention-dependent activity in the striate recipient zone of cat’s lateral posterior-pulvinar complex,” J. Neurosci., 27, 2230–2240 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Merkul’eva.

Additional information

Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 102, No. 10, pp. 1156–1164, October, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merkul’eva, N.S., Bugrova, V.S. & Bondar’, I.V. Development of Intermodule Interactions in Field 18 in Kittens Reared in Different Visual Environments: Orientation Modules. Neurosci Behav Physi 48, 186–191 (2018). https://doi.org/10.1007/s11055-018-0550-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-018-0550-3

Keywords

Navigation