Skip to main content

Advertisement

Log in

Fertilizer-induced Changes in Rhizosphere Electrical Conductivity: Relation to Forest Tree Seedling Root System Growth and Function

  • Published:
New Forests Aims and scope Submit manuscript

Abstract.

Fertilization is standard practice in forest tree seedling nursery culture. Additionally, fertilization at outplanting has potential to facilitate nutrient uptake and reduce transplant shock. Fertilization, however, may dramatically alter rhizosphere chemical properties such as pH, ion availability, and electrical conductivity (EC). These changes may inhibit root system growth and function by reducing soil osmotic potential and creating specific ion toxicities. The risk of root damage associated with high EC levels appears to be dependent on species, age of root system, and soil moisture availability. Root inhibition in container nursery culture of conifers is likely to occur above 2.5 dS  m−1, though threshold EC levels for bareroot culture and field plantings are largely unavailable. Fertilization at outplanting has the added risk that drought conditions may prevent leaching of excess fertilizer salts, which can increase rhizosphere EC beyond safe levels and ultimately impair root uptake of water or nutrients. For fertilization programs to be successful, a critical threshold balance must be maintained between optimizing seedling nutrient availability in the rhizosphere, while minimizing potential for root damage. Future research is needed to identify optimal EC levels for a range of species across all stages of the reforestation process, from nursery culture through plantation establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.A. Allen J.L. Chambers M. Strine (1994) ArticleTitleProspects for increasing the salt tolerance of forest trees: a review Tree Physiol. 14 843–853 Occurrence Handle14967653

    PubMed  Google Scholar 

  2. V.C. Baligar N.K. Fageria M.A. Elrashidi (1998) ArticleTitleToxicity and nutrient constraints on root growth HortScience 33 960–965

    Google Scholar 

  3. N. Bernstein U. Kafkafi (2002) Root growth under salinity stress Y. Waisel A. Eshel U. Kafkafi (Eds) Plant Roots: The Hidden Half. 3rd ed Marcel Dekker New York, NY 787–805

    Google Scholar 

  4. J.R. Boivin K.F. Salifu V.R. Timmer (2004) ArticleTitleLate-season fertilization of Picea mariana seedlings: intensive loading and outplanting response on greenhouse bioassays Ann. For. Sci. 61 1–9 Occurrence Handle10.1051/forest:2004073

    Article  Google Scholar 

  5. N.C. Brady R.R. Weil (2002) The Nature and Properties of Soils. 13th ed Prentice Hall NJ

    Google Scholar 

  6. Brockley R.P. 1988. The Effects of Fertilization on the Early Growth of Planted Seedlings: A Problem Analysis. Forestry CanadaOttawaOnt. For. Resour. Dev. Agree. Rep. 08350752:011.

    Google Scholar 

  7. A.C. Bunt (1988) Media and Mixes for Container Grown Plants Unwin Hyman, Ltd. London, UK 309

    Google Scholar 

  8. R.I. Cabrera (1998) ArticleTitleMonitoring chemical properties of container growing media with small soil solution samplers Sci. Hortic. 75 113–119 Occurrence Handle10.1016/S0304-4238(98)00121-6

    Article  Google Scholar 

  9. W.C. Carlson (1981) ArticleTitleEffects of controlled -release fertilizers on the shoot and root development of outplanted western hemlock (Tsuga heterophylla Raf. Sarg.) seedlings Can. J. For. Res. 11 752–757

    Google Scholar 

  10. W.C. Carlson C.L. Preisig (1981) ArticleTitleEffects of controlled-release fertilizers on the shoot and root development of Douglas-fir seedlings Can. J. For. Res. 11 230–242

    Google Scholar 

  11. D.C. Close I. Bail S. Hunter C.L. Beadle (2005) ArticleTitleEffects of exponential nutrient-loading on morphological and nitrogen characteristics and on after-planting performance of Eucalyptus globulus seedlings For. Ecol. Manage. 205 397–403 Occurrence Handle10.1016/j.foreco.2004.10.041

    Article  Google Scholar 

  12. C. Croser S. Renault J. Franklin J. Zwiazek (2001) ArticleTitleThe effect of salinity on the emergence and growth of Picea mariana Picea glauca Pinus banksiana Environ. Pollut. 115 9–16 Occurrence Handle10.1016/S0269-7491(01)00097-5 Occurrence Handle11586777

    Article  PubMed  Google Scholar 

  13. P.H.B. De Visser W.G. Keltjens (1993) ArticleTitleGrowth and nutrient uptake of Douglas fir seedlings at different rates of ammonium supply, with or without additional nitrate and other nutrients Netherland J. Agric. Sci. 41 327–341

    Google Scholar 

  14. M.C. Drew (1975) ArticleTitleComparison of the effects of a localized supply of phosphatenitrateammonium and potassium on the growth of the seminal root system and the shootin barley New Phytol 75 479–490

    Google Scholar 

  15. O. Fostad P.A. Pedersen (2000) ArticleTitleContainer-grown tree seedling response to sodium chloride applications in different substrates Environ. Pollut. 109 203–210 Occurrence Handle10.1016/S0269-7491(99)00266-3 Occurrence Handle15092891

    Article  PubMed  Google Scholar 

  16. J.A. Franklin J.J. Zwiazek S. Renault C. Croser (2002) ArticleTitleGrowth and elemental composition of jack pine (Pinus banksiana) seedlings treated with sodium chloride and sodium sulfate Trees 16 325–330

    Google Scholar 

  17. Grossnickle S.C. 2005. The importance of root growth in overcoming planting stress. New Forests.

  18. Haase D.L. and Rose R. 1997. Symposium proceedings: Forest seedling nutrition from the nursery to the field2829 Oct. 1997. Nursery Technology CooperativeOregon State Univ., Corvallis, OR, pp. 161.

  19. Haase D.L., Rose R. and Trobaugh J. 2005. Field performance of three stock sizes of Douglas-fir container seedlings grown with slow-release fertilizer in the nursery growing medium. New Forests.

  20. D.O. Huett (1997a) ArticleTitleFertiliser use efficiency by containerised nursery plants. 1. Plant growth and nutrient uptake Aust. J. Agric. Res. 48 251–258 Occurrence Handle10.1071/A96029

    Article  Google Scholar 

  21. D.O. Huett (1997b) ArticleTitleFertiliser use efficiency by containerised nursery plants. 2. Nutrient leaching Aust. J. Agric. Res. 48 259–265 Occurrence Handle10.1071/A96030

    Article  Google Scholar 

  22. M. Idris K.F. Salifu V.R. Timmer (2004) ArticleTitleRoot plug effects on early growth and nutrition of black spruce seedlings For. Ecol. Manage. 195 399–408 Occurrence Handle10.1016/j.foreco.2004.03.005

    Article  Google Scholar 

  23. D.F. Jacobs R. Rose D.L. Haase (2003a) ArticleTitleDevelopment of Douglas-fir seedling root architecture in response to localized nutrient supply Can. J. For. Res. 33 118–125 Occurrence Handle10.1139/x02-160

    Article  Google Scholar 

  24. Jacobs D.F., Rose R. and Haase D.L. 2003b. Incorporating controlled-release fertilizer technology into outplanting. In: Riley L.E., Dumroese R.K. and Landis T.D. National Proceedings: Forest and Conservation Nursery Associations-2002. USDA Forest Serv., Rocky Mtn. Res. Sta., Ogden, UT, RMRS-P-28, pp. 37-42.

  25. D.F. Jacobs R. Rose D.L. Haase P.O. Alzugaray (2004) ArticleTitleFertilization at planting inhibits root system development and drought avoidance of Douglas-fir (Pseudotsuga menziesii) seedlings Ann. For. Sci. 61 643–651 Occurrence Handle10.1051/forest:2004065

    Article  Google Scholar 

  26. M. Kochba S. Gambash Y. Avnimelech (1990) ArticleTitleStudies on slow release fertilizers. 1. Effects of temperaturemoistureand water vapour pressure Soil Sci. 149 339–343

    Google Scholar 

  27. T.T. Kozlowski (1987) ArticleTitleSoil mositure and absorption of water by tree roots J. Arboric. 13 39–46

    Google Scholar 

  28. T.D. Landis (1980) Soil pH and salnity problems at the Mt. Sopris Nursery Proceedings North American Forest Tree Nursery Soils Workshop State Univ. of New York SyracuseNY 88–95

    Google Scholar 

  29. T.D. Landis (1985) Mineral nutrition as an index of seedling quality M.L. Duryea (Eds) Evaluating seedling quality: principles, procedures, and predictive abilities of major tests Forest Research Laboratory, Oregon State Univ. Corvallis, OR 29–48

    Google Scholar 

  30. T.D. Landis (1988) ArticleTitleManagement of forest nursery soils dominated by calcium salts New Forests 2 173–193 Occurrence Handle10.1007/BF00029987

    Article  Google Scholar 

  31. Landis T.D., Tinus R.W., McDonald S.E. and Barnett J.P. 1989. The Container Tree Nursery Manual: Volume 4, Seedling Nutrition and Irrigation. USDA Forest Serv. Agric. Handb. 674, pp. 119.

  32. H.A. Margolis R.H. Waring (1986) ArticleTitleCarbon and nitrogen allocation patterns in Douglas-fir seedlings fertilized with nitrogen in autumn. II. Field performance Can. J. For. Res. 16 903–909

    Google Scholar 

  33. H. Marschner (1995) Mineral Nutrition of Higher Plants. 2nd ed Academic Press London 889

    Google Scholar 

  34. D.G. Maynard K.I. Mallett C.L. Myrholm (1997) ArticleTitleSodium carbonate inhibits emergence and growth of greenhouse-grown white spruce Can. J. Soil Sci. 77 99–105

    Google Scholar 

  35. J.A. McAlister V.R. Timmer (1998) ArticleTitleNutrient enrichment of white spruce seedlings during nursery culture and initial plantation establishment Tree Physiol. 18 195–202 Occurrence Handle12651389

    PubMed  Google Scholar 

  36. B.D. Miller V.R. Timmer (1994) ArticleTitleSteady-state nutrition of Pinus resinosa seedlings: response to nutrient loading, irrigation and hardening regimes Tree Physiol. 14 1327–1338 Occurrence Handle14967607

    PubMed  Google Scholar 

  37. G. Neumann V. Romheld (2001) Root induced changes in the availability of nutrients in the rhizosphere Y. Waisel A. Eshel U. Kafkafi (Eds) Plant Roots: The Hidden Half. 3rd ed Marcel Dekker New York, NY 617–649

    Google Scholar 

  38. A.F.M. Olsthoorn W.G. Keltjens B.V. Baren M.C.G. Hopman B. Van Baren (1991) ArticleTitleInfluence of ammonium on fine root development and rhizosphere pH of Douglas-fir seedlings in sand Plant Soil 133 75–81 Occurrence Handle10.1007/BF00011901

    Article  Google Scholar 

  39. C.A. Peterson D.E. Enstone J.H. Taylor (1999) ArticleTitlePine root structure and its potential significance for root function Plant Soil 217 205–213 Occurrence Handle10.1023/A:1004668522795

    Article  Google Scholar 

  40. B.J. Phillion W.R. Bunting (1983) ArticleTitleGrowth of spruce seedlings at various soluble fertilizer salt levels Tree Plant Notes 34 31–33

    Google Scholar 

  41. A.M. Quoreshi V.R. Timmer (2000) ArticleTitleGrowthnutrient dynamics and ectomycorrhizal development of container-grown Picea mariana seedlings in response to exponential nutrient loading Can J. For. Res. 30 191–201 Occurrence Handle10.1139/cjfr-30-2-191

    Article  Google Scholar 

  42. P. Reddell M.J. Webb D. Poa D. Aihuna (1999) ArticleTitleIncorporation of slow-release fertilisers into nursery media New Forests 18 277–287 Occurrence Handle10.1023/A:1006693308681

    Article  Google Scholar 

  43. D.A. Rook (1991) Seedling development and physiology in relation to mineral nutrition R. van den Driessche (Eds) Mineral Nutrition of Conifer Seedlings CRC Press Boca Raton, FL 85–111

    Google Scholar 

  44. R. Rose J.S. Ketchum (2002) ArticleTitleInteraction of vegetation control and fertilization on conifer species across the Pacific Northwest Can. J. For. Res. 32 136–152 Occurrence Handle10.1139/x01-180

    Article  Google Scholar 

  45. R. Rose J.S. Ketchum (2003) ArticleTitleInteraction of initial seedling diameterfertilization and weed control on Douglas-fir growth over the first four years after planting Ann. For. Sci. 60 1–11 Occurrence Handle10.1051/forest:2003055

    Article  Google Scholar 

  46. K.F. Salifu V.R. Timmer (2001) ArticleTitleNutrient retranslocation response of Picea mariana seedlings to nitrogen Soil Sci. Soc. Am. J. 65 905–913

    Google Scholar 

  47. K.F. Salifu V.R. Timmer (2003a) ArticleTitleNitrogen retranslocation response of young Picea mariana to nitrogen-15 Soil Sci. Soc. Am. J. 67 309–317

    Google Scholar 

  48. K.F. Salifu V.R. Timmer (2003b) ArticleTitleOptimizing nutrient loading of Picea mariana seedlings during nursery culture Can. J. For. Res. 33 1287–1294 Occurrence Handle10.1139/x03-057

    Article  Google Scholar 

  49. R. Sands (1984) ArticleTitleTransplanting stress in radiata pine Aust. For. Res. 14 67–72

    Google Scholar 

  50. H.L. Scoggins D.A. Bailey P.V. Nelson (2001) ArticleTitleDevelopment of the press extraction method for plug substrate analysis: quantitative relationships between solution extraction techniques HortScience 36 918–921

    Google Scholar 

  51. H.L. Scoggins D.A. Bailey P.V. Nelson (2002) ArticleTitleEfficacy of the press extraction method for bedding plant plug nutrient monitoring HortScience 37 108–112

    Google Scholar 

  52. C. Sonneveld J. van den Eerde P.A. van Dijk (1974) ArticleTitleAnalysis of growing media by means of a 1:1.5 volume extract Commun. Soil Sci. Plant Anal. 5 183–202

    Google Scholar 

  53. Y. Teng V.R. Timmer (1995) ArticleTitleRhizosphere phosphorus depletion induced by heavy nitrogen fertilization in forest nursery soils Soil Sci. Soc. Am. J. 59 227–233

    Google Scholar 

  54. F.C. Thornton M. Schaedle D.J. Raynal (1988) ArticleTitleSensitivity of red oak (Quercus rubra L.) and American beech (Fagus grandifolia Ehrh.) seedlings to sodium salts in solution culture Tree Physiol. 4 167–172 Occurrence Handle14972826

    PubMed  Google Scholar 

  55. V.R. Timmer (1997) ArticleTitleExponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites New Forests 13 279–299 Occurrence Handle10.1023/A:1006502830067

    Article  Google Scholar 

  56. Timmer V.R. and Aidelbaum A. 1996. Manual for Exponential Nutrient Loading of Seedlings to Improve Outplanting Performance on Competitive Forest Sites. Can. For. Serv. Gt. Lakes For. Cent. NODA/NFP Tech. Rep. TR25.

  57. V.R. Timmer G. Armstrong (1987a) ArticleTitleDiagnosing nutritional status of containerized tree seedlings: comparative plant analyses Soil Sci. Soc. Am. J. 51 1082–1086

    Google Scholar 

  58. V.R. Timmer G. Armstrong (1987b) ArticleTitleGrowth and nutrition of containerized Pinus resinosa at exponentially increasing nutrient additions Can. J. For. Res. 17 644–647

    Google Scholar 

  59. V.R. Timmer W.J. Parton (1984) ArticleTitleOptimum nutrient levels in a container growing medium determined by a saturation aqueous extract Commun. Soil Sci. Plant Anal. 15 607–618

    Google Scholar 

  60. V.R. Timmer Y. Teng (2004) ArticleTitlePre-transplant fertilization of containerized Picea mariana seedlings: Calibration and bioassay growth response Can. J. For. Res. 34 2089–2098 Occurrence Handle10.1139/x04-088

    Article  Google Scholar 

  61. Tinus R.W. 1984. Salt tolerance of 10 deciduous shrub and tree species. In: Proceedings of Intermountain Nurseryman’s Association 1983 Conference. USDA Forest Serv., Interm. Forest and Range Exp. Sta., Ogden, UT, GTR INT-168, pp. 72-86.

  62. Tinus R.W. and McDonald S.E. 1979. How to Grow Tree Seedlings in Containers in Greenhouses. USDA For. Serv. Gen. Tech. Rep. RM-60. Rocky Mtn. For. Range Expt. Stn. Gen. Tech. Rep. RM-60.

  63. InstitutionalAuthorNameU.S. Salinity Laboratory Staff (1969) Diagnosis and improvement of saline and alkali soils U.S. Superintendent of Documents Washington, DC 160

    Google Scholar 

  64. R. van den Driessche (1984) Soil fertility in forest nurseries M.L. Duryea T.D. Landis (Eds) Forest Nursery Manual: Production of Bareroot Seedlings Martinus Nijhoff/Dr W. Junk Publishers The HagueNetherlands 63–74

    Google Scholar 

  65. R. van den Driessche (1985) ArticleTitleLate-season fertilization, mineral nutrient reserves, and retranslocation in planted Douglas-fir (Pseudotsuga menziesii) (Mirb.) (Franco) seedlings For. Sci. 31 485–496

    Google Scholar 

  66. R. van den Driessche (1988) ArticleTitleNursery growth of conifer seedlings using fertilizers of different solubilities and application timeand their forest growth Can. J. For. Res. 18 172–180

    Google Scholar 

  67. R. van den Driessche (1991) Effects of nutrients on stock performance in the forest R. van den Driessche (Eds) Mineral Nutrition of Conifer Seedlings CRC Press Boca Raton, FL 229–260

    Google Scholar 

  68. C. VanderSchaaf K. McNabb (2004) ArticleTitleWinter nitrogen fertilization of loblolly pine seedlings Plant Soil 265 295–299 Occurrence Handle10.1007/s11104-005-0510-x

    Article  Google Scholar 

  69. C.H.E. Werkhoven P.J. Salisbury W.H. Cram (1966) ArticleTitleGermination and survival of Colorado spruceScots pinecarganaand Siberian elm at four salinity and two moisture levels Can. J. Plant Sci. 46 1–7

    Google Scholar 

  70. D.W. Wright (1986) ArticleTitleThe pour-through nutrient extraction procedure HortScience 21 227–229

    Google Scholar 

  71. M. Zekri (1993) ArticleTitleSeedling emergencegrowth and mineral concentration of three citrus rootstocks under salt stress J. Plant Nutr. 16 1555–1568

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglass F. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, D., Timmer, V. Fertilizer-induced Changes in Rhizosphere Electrical Conductivity: Relation to Forest Tree Seedling Root System Growth and Function. New Forest 30, 147–166 (2005). https://doi.org/10.1007/s11056-005-6572-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-005-6572-z

Keywords

Navigation