Skip to main content
Log in

Achievements and prospects of genetic engineering in poplar: a review

  • Review
  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Poplars play important role in global forestry. Besides being cultivated as an agro-forestry crop, they provide mankind with fuel wood, timber wood, plywood, sports goods, raw material for paper industry and recently, they are being used as a potential biofuel source. However, a number of biotic and abiotic stresses reduce poplar yield and productivity. Further, there is a strong felt need of paper and pulp industries to have reduced lignin content or modified lignin composition of poplar wood, which will assist in manufacturing better quality paper using less environmentally hazardous chemicals. Because of the non-availability of resistance donor sources and long generation period, conventional breeding could achieve success in genetic improvement of poplars. To circumvent these bottlenecks, genetic engineering interventions have been applied for poplar crop improvement. With the availability of Populus trichocarpa genome sequence in public domain, now numerous genes and transcription factors governing various metabolic pathways got identified, which can be targeted for genetic engineering for poplar improvement. Genome editing technology has really expedited the pace of poplar improvement programmes. This review provides an insight into various research efforts focused on poplar genetic engineering for improvement of silviculturally important traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acker RV, Leple JC, Aerts D, Storme V, Goeminne G, Ivens B, Légée F, Lapierre C, Piens K, Van Montagu MCE, Santoro N, Foster CE, Ralph J, Soetaert W, Pilate G, Boerjan W (2014) Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci USA 111(2):845–850

    Article  PubMed  CAS  Google Scholar 

  • Arisi ACM, Mocquot B, Lagriffoul A, Mench M, Foyer CH, Jouanin L (2000) Responses to cadmium in leaves of transformed poplars over-expressing γ-glutamylcysteine synthetase. Physiol Plantarum 109(2):143–149

    Article  CAS  Google Scholar 

  • Ault K, Viswanath V, Jayawickrama J, Ma C, Eaton J, Meilan R, Beauchamp G, Hohenschuh W, Murthy G, Strauss SH (2016) Improved growth and weed control of glyphosate tolerant poplars. New For 47:653–667. https://doi.org/10.1007/s11056-016-9536-6

    Article  Google Scholar 

  • Baucher M, Chabbert B, Pilate G, Doorsselaere JV, Tollier MT, Petit-Conil M, Cornu D, Monties B, Montagu MV, Inze D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:479–1490

    Article  Google Scholar 

  • Baucher M, Christensen JH, Doorsselaere JV, Meyermans H, Chan C, Burggraeve B, Lelpe JC, Pilate G, Petit-Conil M, Jouanin L, Chabbert B, Monties B, Montagu MV, Boerjan W, van Doorsselaere J, Van Montagu M (1997) Molecular tools to study lignin biosynthesis in poplar. Eleventh forum for applied biotechnology Proceedings Part-I. Faculty of Agricultural and Applied Biological Sciences, Gent University, Gent, Belgium, 62(49):1403–1410

  • Baucher M, Montagu MV, Boerjan W, Van Montagu M, Arencibia AD (2000) Improvement of wood quality for the pulp and paper industry by genetic modification of lignin biosynthesis in poplar. In: Proceedings of the international symposium on plant genetic engineering, Havana, Cuba, pp 215–221

  • Bonadei M, Zelasco S, Giorcelli A, Gennaro M, Calligari P, Quattrini E, Carbonera D, Balestrazzi A (2012) Transgene stability and agronomical performance of two transgenic Basta®-tolerant lines of Populus alba L. Plant Biosystems 146:33–40. https://doi.org/10.1080/11263504.2011.641037

    Article  Google Scholar 

  • Brasileiro ACM, Leple JC, Muzzin J, Ounnoughi D, Michel MF, Jouanin L (1991) An alternate approach for gene transfer in trees using wild type Agrobacterium strains. Plant Mol Biol 17:441–452

    Article  CAS  PubMed  Google Scholar 

  • Brasileiro ACM, Tourneur C, Leple JC, Combes V, Jouanin L (1992) Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlorsulfuron resistance to transgenic poplar plants. Transgenic Res 1:133–141

    Article  CAS  Google Scholar 

  • Catranis CM, Maynard CA, Powell WA (1997) Stable transformation of hybrid poplar. Phytopathol 87(6):515–516

    Google Scholar 

  • Charest PJ, Steward D, Budicky PL (1992) Root induction in hybrid poplar by Agrobacterium genetic transformation. Can J For Res 22:1832–1837

    Article  Google Scholar 

  • Chen V, Han Y, Tian Y, Li L, Nie S (1995) Study on plant regeneration from Populus deltoides explants transformed with Bt, toxin gene. Sci Silvae Sinicae 31:97–103

    Google Scholar 

  • Chen Y, Li Q, Li L, Han YF, Tian YC (1996) Western blot analysis of transgenic Populus nigra plants transformed with Bacillus thuringiensis toxin gene. Sci Silvae Sinicae 37(3):274–276

    Google Scholar 

  • Cho JS, Nguyen VP, Jeon HW (2016) Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar. Tree Physiol 36(9):1162–1176

    Article  CAS  PubMed  Google Scholar 

  • Chupeau MV, Lemoine M, Chupeau Y (1994) Requirement of thidiazuron for healthy protoplast development to efficient tree regeneration of a hybrid poplar (Populus tremula × P. alba). J Plant Physiol 141:601–609

    Article  Google Scholar 

  • Confalonieri M, Belenghi B, Balestrazzi A, Negri S, Facciotto G, Schenone G, Delledonne M (2000) Transformation of elite white poplar (Populus alba L.) cv. ‘Villafrance’ and evaluation of herbicide resistance. Plant Cell Rep 19:978–982

    Article  CAS  PubMed  Google Scholar 

  • Cornu D, Leple JC, Bonade-Bottino M, Ross A, Augustin S, Delplanque A, Jouanin L, Pilate G (1996) Expression of a proteinase inhibitor and a Bacillus thuringiensis delta-endotoxin in transgenic poplars. In: Somatic cell genet mol genet trees, pp 131–136

  • Dai WH, Cheng ZM, Sargent W (2003) Plant regeneration and Agrobacterium-mediated transformation of two elite aspen hybrid clones from in vitro leaf tissues. In Vitro Cell Dev Biol Plant 39:6–11

    Article  Google Scholar 

  • Davis JM (2008) Genetic improvement of poplar (Populus spp.) as a bioenergy crop. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer, New York, pp 397–419

    Chapter  Google Scholar 

  • Delledonne M, Allegro G, Belenghi B, Balestrazzi A, Picco F, Levine A, Zelasco S, Calligari P, Confalonieri M (2001) Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor gene and analysis of insect pest resistance. Mol Breeding 7:35–42

    Article  CAS  Google Scholar 

  • Devantier YA, Moffatt B, Jones C, Charest PJ (1993) Microprojectile-mediated DNA delivery to the Salicaceae family. Can J Bot 71:1458–1466

    Article  CAS  Google Scholar 

  • Devillard C (1991) Obtaining genetically transformed roots of Populus tremula × P. alba and P. trichocarpa × P. deltoides after inoculation with Agrobacteirum rhizogenes. Ann Res Sylvicoles 5:22

    Google Scholar 

  • Ding L, Chen Y, Wei X, Ni M, Zhang J, Wang H et al (2017) Laboratory evaluation of transgenic Populus davidiana × Populus bolleana expressing Cry1Ac + SCK, Cry1Ah3, and Cry9Aa3 genes against gypsy moth and fall webworm. PLoS ONE 12(6):e0178754. https://doi.org/10.1371/journal.pone.0178754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donahue RA, Davis TD, Michler CM, Riemenschneider DF, Carter DR, Harquardt PF, Sankhla N, Sankhla D, Haissig RF, Isebrands JG (1994) Growth, photosynthesis and herbicide tolerance of genetically modified hybrid poplar. Can J For Res 24(12):377–2383

    Article  Google Scholar 

  • Dou C, Marcondes W, Djaja J, Renata R, Gustafson R (2017) Can we use short rotation coppice poplar for sugar based biorefinery feedstock? Bioconversion of 2-year-old poplar grown as short rotation coppice. Biotechnol Biofuels 10(1):144. https://doi.org/10.1186/s13068-017-0829-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du NX, Liu X, Li Y, Chen SY, Zhang JS, Ha D, Deng WG, Sun CK, Zhang YZ, Pijut PM (2012) Genetic transformation of Populus tomentosa to improve salt tolerance. Plant Cell Tiss Organ Cult 108:180–189. https://doi.org/10.1007/s11240-011-0026-4

    Article  CAS  Google Scholar 

  • Elorriaga E, Klocko A, Ma C, Strauss SH (2018) Variation in mutation spectra among CRISPR/Cas9 mutagenized poplars. Front Plant Sci 9:594. https://doi.org/10.3389/fpls.2018.00594

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan JF, Han Y, Li L, Peng X, Li JR (2002) Studies on transformation of mtl D/gut D divalent genes to Populus deltoides × P. cathayana. Biotechnol Lett 24:281–286

    CAS  Google Scholar 

  • Fan D, Liu T, Li C, Jiao B, Li S, Hou Y et al (2015) Efficient CRISPR/Cas9 mediated targeted mutagenesis in Populus in the first generation. Sci Rep 5:12217. https://doi.org/10.1038/srep12217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fillaiti JJ, Sellmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium-mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199

    Article  Google Scholar 

  • Fladung M, Kumar S, Ahuja MR (1997) Genetic transformation of Populus genotypes with different chimeric gene constructs: transformation efficiency and molecular analysis. Transgenic Res 6:111–121

    Article  CAS  Google Scholar 

  • Fladung M, Hoenicka H, Ahuja MR (2013) Genomic stability and long-term transgene expression in poplar. Transgenic Res 22:1167–1178. https://doi.org/10.1007/s11248-013-9719-2

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Souriau N, Perret S, Lelandais M, Kunert KJ, Pruvost C, Jouanin L (1995) Over-expression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol 109(3):1047–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke R, McMichael CM, Meyer K, Shirley AM, Cusumano JC, Chapple C (2000) Modified lignin in tobacco and poplar plants over expressing the Arabidopsis gene encoding ferulate 5-hydroxylase. Plant J 22(3):223–224

    Article  CAS  PubMed  Google Scholar 

  • Gallardo F, Fu JM, Canton FR, Garciagutierrez A, Canovas FM, Kirby EG (1999) Expression of a conifer glutamine synthetase gene in transgenic poplar. Planta 210:19–26

    Article  CAS  PubMed  Google Scholar 

  • Main GD, Williamson A, Trvine RJ, Gartland, JS, Fenning TM, Mala J, Gartland KMA (1998) The use of green fluorescent protein (gfp) as a reporter gene in tree genetic manipulations. In: Tree biotechnology: towards the millenium, pp 315–320

  • Giorcelli A, Sparvoli F, Mattivi F, Tava A, Balestrazzi A, Vrhovsek U, Calligari P, Bollini R, Confalonieri M (2004) Expression of the stilbene synthase (stsy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res 13(3):203–214

    Article  CAS  PubMed  Google Scholar 

  • Gozukirmizi M (1997) Modification of lignin and peroxidase activity in Populus tremula by antisense technology. In: Proceedings of XIth world forestry congress held at Antalya, Turkey, October 13–22, 1997

  • Gray M, Moutor EK, Cukovic D, Carlson JE, Dounglas CJ (1999) Developmentally regulated patterns of expression directed by poplar PAL promoters in transgenic tobacco and poplar. Plant Mol Biol 39:657–669

    Article  Google Scholar 

  • Guo PX, Zhang J, Liu ZH, Pang XB (2011) Investigation of arthropod community and the stability of insect-resistance of the triploid Chinese white poplar transformed with two insect-resistant genes. Hebei J For Orchard Res 1:17

    Google Scholar 

  • Guo Q, Lu N, Sun Y, Lv W, Luo Z, Zhang H, Ji Q, Yang Q, Chen S, Zhang W, Li Y (2019) Heterologous expression of the DREB transcription factor AhDREB in Populus tomentosa Carrière confers tolerance to salt without growth reduction under greenhouse conditions. Forests 10:214. https://doi.org/10.3390/f10030214

    Article  Google Scholar 

  • Gyulai G, Humphreys M O, Bittsanszky A, Skot KP, Kiss J, Skot L (2005) AFLP analysis and improved phytoextraction capacity of transgenic gshI-poplar clones (Populus × canescens) for copper in vitro. In: Proceedings of an international OECD workshop, Matrahaza, Hungary

  • Han KH, Gordon MP, Strauss SH (1997a) High frequency transformation of cotton woods (genus Populus) by Agrobacterium tumefaciens. Can J For Res 24:464–470

    Article  Google Scholar 

  • Han KH, Ma C, Strauss SH (1997b) Matrix attachment regions (MARs) enhance transformation frequency and transgene expression in poplar. Transgenic Res 6:415–420

    Article  CAS  Google Scholar 

  • Han KH, Meilan R, Ma C, Struss SH (2000) An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus). Plant Cell Rep 19:315–320

    Article  CAS  PubMed  Google Scholar 

  • Hawkins S, Leple JC, Cornu D, Jouanin L, Pilate G (2003) Stability of transgene expression in poplar: a model forest tree species. Ann For Sci 60:427–438

    Article  Google Scholar 

  • Herschbach C, Jouanin L, Rennenberg H (1998) Over-expression of gamma-glutamylcysteine synthetase, but not of glutathione synthetase, elevates glutathione allocation in the phloem of transgenic poplar trees. Plant Cell Physiol 39(4):447–451

    Article  CAS  Google Scholar 

  • Heuchelin SA, McNabb MS, Klopfenstein NR (1997) Agrobacterium-mediated transformation of Populus × euramericana ‘Ogy’ using the chimeric CaMV35S pin2 gene fusion. Can J For Res 27(7):1041–1048

    CAS  Google Scholar 

  • Horvath B, Peszlen I, Peralta P, Kasal B, Li L (2010a) Effect of lignin genetic modification on wood anatomy of aspen trees. Intl Assoc Wood Anatomists 31:29–38

    Google Scholar 

  • Horvath L, Peszlen I, Peralta P, Kelley S (2010b) Use of transmittance near-infrared spectroscopy to predict the mechanical properties of 1- and 2-year-old transgenic aspen. Wood Sci Technol 45:303–314

    Article  CAS  Google Scholar 

  • Howe GT, Goldfarb B, Strauss SH (1994) Agrobacterium—mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants. Plant Cell Tiss Org Cult 36:59–71

    Article  CAS  Google Scholar 

  • Hu X, Han B (2017) Plant regeneration and Agrobacterium-mediated transformation of vacuolar H+−ATPase c subunit gene in hybrid poplar Populus davidiana Dode × P. bolleana Lauche. BIO Web Conf 8:03004

    Article  Google Scholar 

  • Hu L, Lu H, Liu Q, Chen X, Jiang X (2005) Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol. Tree Physiol 25:1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Qi Q, Zhao Y, Tian X, Lu H, Gai Y, Jiang X (2019) Unraveling the impact of Pto4CL1 regulation on the cell wall components and wood properties of perennial transgenic Populus tomentosa. Plant Physiol Biochem 139:672–680

    Article  CAS  PubMed  Google Scholar 

  • Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H-F5H transformed poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem 51(21):6178–6183

    Article  CAS  PubMed  Google Scholar 

  • Igasaki T, Ishida Y, Mohri T, Ishikawa H, Shinohara K (2002) Transformation of Populus alba and direct selection of transformants with the herbicide bialaphos. Bull FFPRI 1:235–240

    CAS  Google Scholar 

  • Jia Z, Gou J, Sun Y, Yuan L, Tang Q, Yang X, Pei Y, luo K (2010) Enhanced resistance to fungal pathogens in transgenic Populus tomentosa Carr. by overexpression of an nsLTP-like antimicrobial protein gene from motherwort (Leonurus japonicus). Tree Physiol 30:1599–1605

    Article  CAS  PubMed  Google Scholar 

  • Jiang CQ, Zheng QS, Liu ZP, Xu WJ, Hy Li, Li Q (2010) Salt tolerance of transgenic poplar by the introduction of AtNHX1 gene. Chin J Plant Ecol 34:563–570

    CAS  Google Scholar 

  • Jiang Y, Guo L, Ma X, Zhao X, Jiao B, Li C et al (2017) The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus. Tree Physiol 37:665–675. https://doi.org/10.1093/treephys/tpx008

    Article  CAS  PubMed  Google Scholar 

  • JingBo Q, Ishihara Y, Kuroda H, Sakai F, Sakai H, Komano T (1997) Transient expression of goat growth hormone gene in poplar (Populus alba L.) protoplasts: a quick method for detection of foreign gene expression in mRNA level. Biosci Biotechnol Biochem 61:1580–1581

    Article  Google Scholar 

  • Jouanin L (1997) Modification of lignin composition in trees by genetic engineering. C R Seances Soc Biol Fil 191(2):155–159

    CAS  Google Scholar 

  • Jouanin L, Brasiliero ACM, Leplé JC, Pilate G, Cornu D (1999) Genetic transformation: a short review of methods and their applications, results and perspectives for forest trees. Ann Sci For 50:325–336

    Article  Google Scholar 

  • Jouanin L, Goujon T, Nadai V, Martin MT, Mila I, Vallet C, Pollet B, Yashinaga A, Chhabert B, Conil MP, Lapierre C (2000) Lignification in transgenic poplars with extremely reduced caffeic acid-O-methyl transferase activity. Plant Physiol 123:1363–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jouanin L, Goujon T, Sibout R, Pollet B, Mila I, Leple JC, Pilate G, Petit CM, Ralph J, Lapierre C (2004) Comparison of the consequences on lignin content and structure of COMT and CAD down-regulation in poplar and Arabidopsis thaliana. In: Plantation forest biotechnology for the 21st century, pp 219–229

  • Kajita S, Osakabe K, Katayamsa Y, Kawai S, Matsumoto Y, Hata K, Motohoshi N (1994) Agrobacterium-mediated transformation of poplar using a disarmed binary vector and the overexpression of a specific member of a family of poplar peroxidase genes in transgenic poplar cell. Plant Sci 103:231–239

    Article  CAS  Google Scholar 

  • Kalluri UC, Payyavula RS, Labbé JL, Engle N, Bali G, Jawdy SS, Sykes RW, Davis M, Ragauskas A, Tuskan GA, Tschaplinski TJ (2016) Down-regulation of KORRIGAN-like endo-β-1,4-glucanase genes impacts carbon partitioning, mycorrhizal colonization and biomass production in Populus. Front Plant Sci 7:1455. https://doi.org/10.3389/fpls.2016.01455

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YW, Noh EW, Youn Y, Noh ER (1995) Genetic transformation of Populus nigra using Agrobacterium tumefaciens LBA 4404/pBKS-1. Res Report For Genet Res Inst (Kyonggido) 31:160–166

    CAS  Google Scholar 

  • Kirby EG, Wu D, Fu J, Gallard F, Canovas FM (1999) Expression of a pine cytosolic glutamine synthetase gene in transgenic poplar. In: Forestry biotechnology—99: proceedings of a conference, Keble College, University of Oxford, UK, p 43

  • Kleiner KW, Ellis DD, McCown BH, Raffa KF (1995) Field evaluation of transgenic poplar expressing a Bacillus thuringiensis cry1A (1) d-endotoxin gene against forest tent caterpillar (Lepidoptera: Lasiocampidae) and gypsy moth (Lepidoptera: Lymantriidae) following winter dormancy. Environ Entomol 24:1358–1364. https://doi.org/10.1093/ee/24.5.1358

    Article  Google Scholar 

  • Klopfenstein NB, Shi NQ, Kernan A, McNabb HS, Hall RB, Hart ER, Thornburg RW (1997) Transgenic Populus hybrid expresses a wound induction potato proteinase inhibitor-II CAT gene fusion. Can J For Res 21:1321–1328

    Article  Google Scholar 

  • Kogawara S, Mohri T, Igasaki T, Nakajima N, Shinohara K (2014) Drought and salt stress tolerance of ozone-tolerant transgenic poplar with an antisense DNA for 1-aminocyclopropane-1-carboxylate synthase. Bull FFPRI 13(3):89–98

    Google Scholar 

  • Kovalitskayaa Y, Dayanovaa L, Azarovaa A, Shestibratova K (2016) RNA interference-mediated down-regulation of 4 coumarate: coenzyme a ligase in Populus tremula alters lignification and plant growth. Intl J Environ Sci Edu 119(18):12259–12271

    Google Scholar 

  • Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple JC, Boerjan W, Ferret V, Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid-O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119(1):153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebedev VG, Faskhiev VN, Kovalenko NP, Shestibratov KA, Miroshnikov AI (2016) Testing transgenic aspen plants with bar gene for herbicide resistance under semi-natural conditions. Acta Naturae 8(2):29

    Article  Google Scholar 

  • Leple JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11:137–141

    Article  CAS  PubMed  Google Scholar 

  • Levee V, Major I, Levasseur C, Tremblay L, MacKay J, Seguin A (2009) Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense. New Phytol 184:48–70

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yifan L, Liang T, Yingchuan L, Ming W, Shi J, Li ML, Han YF, Li L, Tian YC, Li N, Wang SJ (1999a) Cloning of ACC oxidase cDNA and its inhibition of ethylene synthesis by its antisense RNA in transgenic P. deltoides. For Res 12:223–228

    Google Scholar 

  • Li ML, Han YF, Qiu DY, Li N, Tian YC (1999b) Cloning of ACC synthase cDNA and its inhibition of ethylene synthesis by its antisense RNA in transgenic Populus deltoides. Sci Silvae Sinicae 35(3):10–15

    Google Scholar 

  • Li L, Qi LW, Han YF, Wang YC, Li WB (2000) A study on the introduction of male sterility of anti-insect transgenic Populus nigra by the TA29-Barnase gene. Sci Silvae Sinicae 36:28–32

    Google Scholar 

  • Li J, Brunner AM, Shevchenko O, Meilan R, Ma C, Skinner JS et al (2007) Efficient and stable transgene suppression via RNAi in field-grown poplars. Transgenic Res 17:679–694

    Article  CAS  PubMed  Google Scholar 

  • Li J, Brunner AM, Meilan R, Struss SH (2008) Stability of transgenes in trees: expression of two reporter genes in poplar over three field seasons. Tree Physiol 29:299–312

    Article  PubMed  CAS  Google Scholar 

  • Li D, Song S, Xia X, Yin W (2012) Two CBL genes from Populus euphratica confer multiple stress tolerance in transgenic triploid white poplar. Plant Cell Tiss Organ Cult 109:477–489. https://doi.org/10.1007/s11240-011-0112-7

    Article  CAS  Google Scholar 

  • Li S, Zhen C, Xu W, Wang C, Cheng Y (2017) Simple, rapid and efficient transformation of genotype Nisqually-1: a basic tool for the first sequenced model tree. Sci Rep 7:2638. https://doi.org/10.1038/s41598-017-02651-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang H, Catranis CM, Maynard CA, Powell WA (2002) Enhanced resistance to the poplar fungal pathogen, Septoria musiva in hybrid poplar clones transformed with genes encoding antimicrobial peptides. Biotechnol Lett 24:383–389

    Article  CAS  Google Scholar 

  • Lin T, Wang ZY, Liu KY, Jing TZ, Zhang CX (2006) Transformation of spider neurotoxin gene with prospective insecticidal properties into hybrid poplar Populus simonii × P. nigra. Acta Entomol Sinica 49(4):593–598

    CAS  Google Scholar 

  • Liu B, Li HS, Wang QH, Cui DC (2002) Transformation of Populus tomentosa with anti-PLD gene. Hered Beijing 24:40–44

    Google Scholar 

  • Liu J, Wang C, Wang B, Liu J, Zhao J, Huang Y, Zhang H (2008a) Study on the salt tolerance of genetically modified triploid Chinese white poplar. For Res Beijing 21:379–385

    Google Scholar 

  • Liu TT, Pang XM, Long C, Zhang ZY (2008b) Successful Agrobacterium-mediated transformation of Populus tomentosa with apple SPDS gene. For Stud China 10:153–157

    Article  CAS  Google Scholar 

  • Liu D, Zhang J, Dong Y, Zhang X, Yang M, Gao B (2016) Genetic transformation and expression of Cry1AcCry3ANTHK1 genes in Populus × euramericana “Neva”. Acta Physiol Plant 38:177. https://doi.org/10.1007/s11738-016-2195-6

    Article  CAS  Google Scholar 

  • Lu N, Wei B, Sun Y, Liu X, Chen S, Zhang W, Zhang Y, Li Y (2014) Field supervisory test of DREB-transgenic Populus: salt tolerance, long-term gene stability and horizontal gene transfer. Forests 5:1106–1121

    Article  Google Scholar 

  • Ma C, Strauss SH, Meilan R (2004) Agrobacterium-mediated transformation of the genome-sequenced poplar clone, Nisqually-1 (Populus trichocarpa). Plant Mol Biol Rep 22:1–9

    Article  Google Scholar 

  • Maheshwari P, Kovalchuk I (2016) Agrobacterium-mediated stable genetic transformation of Populus angustifolia and Populus balsamifera. Front Plant Sci 7:296. https://doi.org/10.3389/fpls.2016.00296

    Article  PubMed  PubMed Central  Google Scholar 

  • McCown BH, McCabe DE, Russel DR, Robinson DJ, Barton KA, Raffa KF (1991) Transformation of Populus spp. and incorporation of pest resistance by electric discharge particle acceleration (direct gene transfer) method. Plant Cell Rep 9:590–594

    Article  CAS  PubMed  Google Scholar 

  • Meilan R, Han KYH, Ma CP, James RR, Eaton JA, Stanton BJ, Hoien E, Crockett RP, Strauss SH (2000) Development of glyphosate-tolerant hybrid cottonwoods. Tappi J 83:164–166

    CAS  Google Scholar 

  • Meilan R, Han KH, Ma C, DiFazio SP, Eaton JA, Holen FA, Stanton RJ, Crockett RP, Taylor ML, James RR, Skinner JS, Jouanin L, Pilate G, Strauss SH (2002) The CP4 transgene provides high levels of tolerance of Round up Reg. herbicide in field-grown hybrid poplars. Can J For Res 32(6):967–976

    Article  CAS  Google Scholar 

  • Mentag R, Luckevich M, Morency MJ, Seguin A (2003) Bacterial disease resistance of transgenic hybrid poplar expressing the synthetic antimicrobial peptide D4E1. Tree Physiol 23:405–411

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Nowak K, Sharma V, Schulze J, Mendel RR, Hansch R (2004) Vectors for RNAi technology in poplar. Plant Biol 6(1):100–103

    Article  CAS  PubMed  Google Scholar 

  • Meyermans H, Morreel K, Lapierre C, Pollet B, Bruyn A, Busson R, Herdewijin P, Devreese B, Beeuman JV, Marita JM, Ralph J, Chen CY, Burggraeve B, Montagu MV, Messens E, Boerjan W, Chen CY, de-Bruyn A, Van-Beeuman J, Van-Montagu M (2000) Modification in lignin and accumulation of phenolic glucosides in poplar xylem upon down regulation of caffeoyl-coenzyme A-O-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem 275(47):36899–36909

    Article  CAS  PubMed  Google Scholar 

  • Mijnsbrugge K, Montagu M, Inze D, Boerjan W (1996) Tissue-specific expression conferred by the S-adenosyl-l-methionine synthetase promoter of Arabidopsis thaliana in transgenic poplar. Plant Cell Physiol 37(8):1108–1115

    Article  CAS  Google Scholar 

  • Miller et al (2019) Populus with reduced lignin. BioResour 14(3):5729–5746

    CAS  Google Scholar 

  • Mohamed R, Meilan R, Ostry ME, Michler CH, Strauss SH (2001) Bacterio-opsin gene overexpression fails to elevate fungal disease resistance in transgenic poplar (Populus). Can J For Res 31:268–275

    CAS  Google Scholar 

  • Mohri T, Igasaki T, Futamura N, Shinohara K (1999) Morphological changes in transgenic poplar induced by expression of the rice homebox gene OSHI. Plant Cell Rep 18:816–819

    Article  CAS  Google Scholar 

  • Moreno-Cortes A, Ramos-Sanchez JM, Hernandez-Verdeja T et al (2017) Impact of RAV1-engineering on poplar biomass production: a short-rotation coppice field trial. Biotechnol Biofuels 10:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muhr M, Paulat M, Awwanah M, Brinkkötter M, Teichmann T (2018) CRISPR/Cas9-mediated knockout of Populus BRANCHED1 and BRANCHED2 orthologs reveals a major function in bud outgrowth control. Tree Physiol 38:1588–1597. https://doi.org/10.1093/treephys/tpy088

    Article  CAS  PubMed  Google Scholar 

  • Newman LA, Strand SE, Choe N, Duffy J, Ehuan G, Ruszaj M, Shurtieff RB, Wilmoth J, Heilman P, Gordon MP (1997) Uptake and biotransformation of trichloroethylene by hybrid poplars. Environ Sci Technol 31(4):1062–1067

    Article  CAS  Google Scholar 

  • Nicolescu C, Sandre C, Jouanin L, Chriqui D (1996) Genetic engineering of phenolic metabolism in poplar in relation with resistance against pathogens. Acta Botanica Gallica 143(6):539–546

    Article  CAS  Google Scholar 

  • Noel A, Levasseur C, Van QL, Seguin A (2005) Enhanced resistance to fungal pathogens in forest trees by genetic transformation of black spruce and hybrid poplar with a Trichoderma harzianum endochitinase gene. Physiol Mol Plant Pathol 67(2):92–99

    Article  CAS  Google Scholar 

  • Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa KI (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15(5):637–646

    Article  CAS  PubMed  Google Scholar 

  • Ovadis M, Chernin L, Tzfira T, Canaan V, Aharoni A, Sakar D, Altman A, Vainstein A (1998) Transformation of tobacco and aspen plants with the ‘ita’ locus of IncQ plasmid confers resistance to Agrobacterium tumefaciens. Plant biotechnology and in vitro biology in the 21st century. In: Proceedings of the IXth international congress of the international association of plant tissue culture and biotechnology, pp 286–288

  • Ozparpucu M, Ruggeberg M, Gierlinger N, Cesarino I, Vanholme R, Boerjan W, Burgert I (2017) Unravelling the impact of lignin on cell wall mechanics: a comprehensive study on young poplar trees downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD). Plant J Cell Mol Biol 91:480–490

    Article  CAS  Google Scholar 

  • Paques M, Bercetche J, Bruneau G, Bregeon JM, Thivolle Cazat A, Bonduelle P (1995) Genetic engineering for poplar improvement. Estat et perspectives de la populicutture. In: Colloque Organise 29 et 30 mars 1995, Ecole superieure du Bois, Nantis, France, Comptes Rendus de l’Academic d’ Agriculture de France, pp 153–162

  • Park YG, Sul TW, Ahn JS, Shin DT (2000) Production of transgenic poplar with antisense OMT gene via Agrobacterium tumefaciens. In: Proceedings of XXI IUFRO world congress at Kualalumpur, Malaysia. Forests and Society, pp 67–68

  • Park YW, Baba K, Furuta Y, Tida T, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FFBS Lett 564(1/2):183–187

    Article  CAS  Google Scholar 

  • Parsons TJ, Sinkar VP, Steller RF, Nester W, Garden MP (1986) Transformation of poplar by Agrobacterium tumefaciens. Biotechnol J 4:533–536

    CAS  Google Scholar 

  • Rao H, Chen Y, Huang M, Wang M, Wu N, Fan Y (2000) Genetic transformation of poplar NL-80106 transferred by bt. gene and its insect resistance. J Plant Res Environ 9:1–5

    CAS  Google Scholar 

  • Riemenschneider DE, Haissig RF, Sellmer J, Fillaiti JJ (1988) Expression of an herbicide tolerance gene in young plants of a transgenic hybrid poplar clone. In: Proceedings of somatic cell genetics of woody plants. IUFRO Working Party S204-07, held in Grosshansdorf, W. Germany, 10–13 Aug, 1987

  • Sala F, Castiglione S, Jianjun H, Zheng Y, Han Y (2000) Field and molecular evaluation of insect-resistant transgenic poplar (Populus nigra L.) trees. In: Proceedings of the international symposium on plant genetic engineering, Havana, Cuba, 6–10 Dec, pp 137–147

  • Salyaev R, Rekoslavskaya N, Chepinoga A, Mapelli S, Pacovsky R (2006) Transgenic poplar with enhanced growth by introduction of the ugt and acb genes. New For 32(2):211–229

    Article  Google Scholar 

  • Sanchez N, Manzanera JA, Bueno MA (2004) Agrobacterium-mediated transformation of white poplar (Populus alba L.). In: Phyton Buenos Aires 123–130

  • Saraswat A, Khan AA, Thakur AK, Gaur A, Srivastava DK (2016) Agrobacterium-mediated genetic transformation of Populus deltoides Marsh. clone G48 with gus and npt-II genes. Vegetos 29:4. https://doi.org/10.5958/2229-4473.2016.00097.5

    Article  Google Scholar 

  • Schwartzenberg K, Doumas P, Jouanin L, Pilate G (1994) Enhancement of the endogenous cytokinin concentration in poplar by transformation with Agrobacterium T-DNA gene ipt. Tree Physiol 14(1):27–35

    Article  Google Scholar 

  • Shani Z, Dekel M, Jensen CJ, Tzfira T, Goren R, Altman A, Shoseyov O (2000) Arabidopsis thaliana endo-1,4-β-glucanase (cel1) promoter mediates ‘uida’ expression in elongating tissues of aspen (Populus tremula). J Plant Physiol 156:118–120

    Article  CAS  Google Scholar 

  • Shani Z, Dekel M, Tsabary G, Goren R, Shoseyov O (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,5-β-glucanase (cel1). Mol Breed 14(3):321–330

    Article  Google Scholar 

  • Shim D, Kim S, Choi Y, Song WY, Park J, Youk ES, Jeong SC, Martinoia E, Noh EW, Lee Y (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90(4):1478–1486. https://doi.org/10.1016/j.chemosphere.2012.09.044

    Article  CAS  PubMed  Google Scholar 

  • Soliman MH, Hussein MHA, Gad MMA, Mohamed AS (2017) Genetic transformation of white poplar (Populus alba L) with glutaredoxin-2 gene. Biosci Res 14(3):464–472

    Google Scholar 

  • Son S, Hyun J (1998) Transformation of Populus nigra × P. maximowiczii using Agrobacterium tumefaciens vector. J Korean For Soc 87:164–172

    Google Scholar 

  • Song C, Lu L, Guo Y, Xu H, Li R (2019) Efficient Agrobacterium-mediated transformation of the commercial hybrid poplar Populus alba × Populus glandulosa Uyeki. Int J Mol Sci 20:2594. https://doi.org/10.3390/ijms20102594

    Article  CAS  PubMed Central  Google Scholar 

  • Strohm M, Eiblmeier M, Langebartels C, Jouanin L, Pollet A, Sandermann H, Rennenberg H (1999) Responses of transgenic poplar (Populus tremula × P. alba) overexpressing glutathione synthetase or glutathione reductase to acute ozone stress: visible injury and leaf gas exchange. J Exptl Bot 50:365–374

    Article  CAS  Google Scholar 

  • Studart GC, Lacorte C, Brasileiro ACM (2006) Evaluation of heterologous promoters in transgenic Populus tremula × P. alba plants. Biol Plantarum 50(1):15–20

    Article  Google Scholar 

  • Sun W, Deng D, Yang L, Zheng X, Yu J, Pan H, Zhuge Q (2013) Overexpression of the chloride channel gene (GmCLC1) from soybean increase salt tolerance in transgenic Populus deltoides × P. euramericana ‘Nanlin895’. POJ 6(5):347–354

    CAS  Google Scholar 

  • Takata N, Eriksson ME (2012) A simple and efficient transient transformation for hybrid aspen (Populus tremula × P. tremuloides). Plant Methods 8:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakur AK, Sharma S, Srivastava DK (2005) Plant regeneration and genetic transformation studies in petiole tissue of Himalayan poplar (Populus ciliata Wall.). Curr Sci 89:664–668

    CAS  Google Scholar 

  • Thakur AK, Aggarwal G, Srivastava DK (2012a) Genetic modification of lignin biosynthetic pathway in Populus ciliata Wall. via Agrobacterium-mediated antisense CAD gene transfer for quality paper production. Natl Acad Sci Lett 35(2):79–84. https://doi.org/10.1007/s40009-012-0018-x

    Article  CAS  Google Scholar 

  • Thakur AK, Saraswat A, Srivastava DK (2012b) In vitro plant regeneration through direct organogenesis in Populus deltoides clone G48 from petiole explants. J Plant Biochem Biotechnol 21(1):23–29

    Article  CAS  Google Scholar 

  • Tian LN, Levee V, Mentag R, Charest PJ, Seguin A (1999) Green fluorescent protein as a tool for monitoring transgene expression in forest tree species. Tree Physiol 19(8):541–546

    Article  CAS  PubMed  Google Scholar 

  • Tollier MT, Chabbert B, Lapierre C, Monties B, Francesch C, Rolando C, Jouanin L, Pilate G, Cornu D, Baucher M, Inze D, Brouillard R, Jay M, Scalbert A (1995) Lignin composition in transgenic poplar plants with modified cinnamyl alcohol dehdrogenase activity with reference to dehydropolymer models of lignin. In: Proceedings of 17th international conference, Palma de Mallorca, Spain, pp 339–340

  • Tsai CJ, Podila GK, Chiang VL (1994) Agrobacterium-mediated transformation of quaking aspen (Populus tremuloides) and regeneration of transgenic plants. Plant Cell Rep 14:94–97

    CAS  PubMed  Google Scholar 

  • Tuominen H, Sitbon F, Jacobsson C, Sandberg G, Olsson O, Sundberg B (1995) Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid-biosynthetic gene. Plant Pysiol 109:1179–1189

    CAS  Google Scholar 

  • Tuskan GA et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. and Gray). Science 313:1596–1604. https://doi.org/10.1126/science.1128691

    Article  CAS  PubMed  Google Scholar 

  • Tzfira T, Jensen CS, Wang W, Zuker A, Vincour B, Altman A, Vainstein A (1998) Transgenic Populus tremula: a step-by-step protocol for its Agrobacterium-mediated transformation. Plant Mol Biol Rep 15:219–235

    Article  Google Scholar 

  • Tzfira T, Vainstein A, Altman A (1999) rol-gene expression in transgenic aspen (Populus tremula) plants results in accelerated growth and improved stem production index. Trees 14:49–54

    Google Scholar 

  • Van Doorsselaere J, Baucher M, Chognot E, Chabbert B, Tollier MT, Petit Conil M, Leple JC, Pilate G, Cornu D, Monties B, Inze D, Boerjan W, Jouanin L (1995) A novel lignin in poplar trees with a reduced caffeic acid/5 hydroxyferulic acid O-methyl transferase activity. Plant J 8:855–864

    Article  Google Scholar 

  • Voelker SL, Lachenbruch B, Meinzer FC, Jourdes M, Ki C, Patten AM, Davin LB, Lewis NG, Tuskan GA, Gunter L, Decker SR, Selig MJ, Sykes R, Himmel ME, Kitin P, Shevchenko O, Strauss SH (2010) Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar. Plant Physiol 154:874–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan S, Li C, Ma X, Luo K (2017) PtrMYB57 contributes to the negative regulation of anthocyanin and proanthocyanidin biosynthesis in poplar. Plant Cell Rep 36:1263–1276. https://doi.org/10.1007/s00299-017-2151-y

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Constabel CP (2004) Polyphenol oxidase over-expression in transgenic Populus enhances resistance to herbivory by forest tent caterpillar (Malacosoma disstria). Planta 220(1):87–96

    Article  CAS  PubMed  Google Scholar 

  • Wang YC, Emerick RM, Denchev PD, Conger RV, Tuskan GA (1995) A biolistic approach for the transient expression of a GUS reporter gene in callus cultures of hybrid poplar. In Vitro Cell Dev Biol Plant 31(4):226

    Google Scholar 

  • Wang GJ, Castiglione S, Chen Y, Li L, Han YF, Tian Y, Gabriel DW, Han Y, Mang K, Sala F (1996) Poplar (Populus nigra L.) plants transformed with a Bacillus thuringiensis toxin gene: insecticidal activity and genomic analysis. Transgenic Res 5:289–301

    Article  CAS  Google Scholar 

  • Wang WX, Tzfira T, Levin N, Shoseyov O, Altman A (1999) Plant tolerance to water and salt stress: the expression pattern of a water stress responsive protein (Bsp A) in transgenic aspen plants. Plant biotechnology and in vitro biology in the 21st century. In: Proceedings of the IXth international congress of the international association of plant tissue culture and biotechnology, pp 66–68

  • Wang YC, Qu GZ, Li HY, Wu YJ, Wang C, Liu GF, Yang CP (2010) Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Mol Biol Rep 37:1119–1124

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Xue Y, Chen Y, Li R, Wei J (2012) Lignin modification improves the biofuel production potential in transgenic Populus tomentosa. Ind Crops Products 37:170–177

    Article  CAS  Google Scholar 

  • Wang C, Bao Y, Wang Q, Zhang H (2013) Introduction of the rice CYP714D1 gene into Populus inhibits expression of its homologous genes and promotes growth, biomass production and xylem fibre length in transgenic trees. J Exptl Bot 64(10):2847–2857. https://doi.org/10.1093/jxb/ert127

    Article  CAS  Google Scholar 

  • Wang L, Ran L, Hou Y, Tian Q, Li C, Liu R et al (2017) The transcription factor MYB115 contributes to the regulation of proanthocyanidin biosynthesis and enhances fungal resistance in poplar. New Phytol 215:351–367. https://doi.org/10.1111/nph.14569

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Dong Y, Liu X, Yao G, Yu X, Yang M (2018) The current status and development of insect-resistant genetically engineered poplar in China. Front Plant Sci 9:1048. https://doi.org/10.3389/fpls.2018.01408

    Article  Google Scholar 

  • Wi SG, Lee KH, Park BD, Park YG, Kim YS (2004) Anatomical, chemical and topochemical characteristics of transgenic poplar down-regulated with O-methyltransferase. J Kor Wood Sci Technol 32(3):15–24

    Google Scholar 

  • Wilkins O, Nahal H, Foong J, Provart NJ, Campbell MM (2009) Expansion and diversification of the Populus R2R3-MYB family of transcription factors. Plant Physiol 149:981–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong J, Liang J, Chen XY, Li W, Li H, Liu Y (2005) The rooting ability of rolB transformed clones of Populus tomentosa. J Beijing For Univ 27(5):54–58

    CAS  Google Scholar 

  • Xu C, Fu X, Liu R, Guo L, Ran L, Li C et al (2017) PtoMYB170 positively regulates lignin deposition during wood formation in poplar and confers drought tolerance in transgenic Arabidopsis. Tree Physiol 37:1713–1726. https://doi.org/10.1093/treephys/tpx093

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Wei H, Wang L, Yin T, Zhuge Q (2019) Optimization of the cry1Ah1 sequence enhances the hyper-resistance of transgenic poplars to Hyphantria cunea. Front Plant Sci 10:335. https://doi.org/10.3389/fpls.2019.00335

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang CP, Liu GF, Liang HW, Zhang H (2001) Study on the transformation of Populus simonii × P. nigra with salt resistance gene Bet-A. Sci Silvae Sinicae 37(6):34–38

    Google Scholar 

  • Yang MS, Li ZL, Wang Y, Wang JM, Liang HY (2006) Transformation and expression of two insect-resistant genes to hybrid triploid of Chinese White Poplar. Sci Silvae Sinicae 42(9):61–68

    Google Scholar 

  • Yang C, Li H, Cheng Q, Chen Y (2009) Transformation of drought and salt resistant gene (DREB1C) in Populus × euramericana cv. Nanlin 895. Sci Silvae Sinicae 45:17–21

    CAS  Google Scholar 

  • Yang RL, Wang AX, Zhang J, Dong Y, Yang MS, Wang JM (2016) Genetic transformation and expression of transgenic lines of Populus × euramericana with insect-resistance and salt-tolerance genes. Genet Mol Res 15(2):15028635

    Article  Google Scholar 

  • Yang L, Zhao X, Ran L, Li C, Fan D, Luo K (2017) PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynthesis during wood formation in poplar. Sci Rep 7:41209. https://doi.org/10.1038/srep41209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao W, Wang S, Zhou B, Jiang T (2016) Transgenic poplar overexpressing the endogenous transcription factor ERF76 gene improves salinity tolerance. Tree Physiol 36:896–908. https://doi.org/10.1093/treephys/tpw004

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Busov V, Zhao N, Meilan R, McDonnell L, Coleman H et al (2011) Transgenic Populus trees for forest products, bioenergy, and functional genomics. Critical Rev Plant Sci 30:415–434

    Article  Google Scholar 

  • Ye S, Jiang Y, Duan Y, Karim A, Fan D, Yang L, Zhao X, Yin J, Luo K (2014) Constitutive expression of the poplar WRKY transcription factor PtoWRKY60 enhances resistance to Dothiorella gregaria Sacc. in transgenic plants. Tree Physiol 34(10):1118–1129

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Chen H, Sun J, Li L (2014) PtrKOR1 is required for secondary cell wall cellulose biosynthesis in Populus. Tree Physiol 34:1289–1300. https://doi.org/10.1093/treephys/tpu020

    Article  CAS  PubMed  Google Scholar 

  • Zelasco S, Reggi S, Calligari P, Balestrazzi A, Bongiorni C, Quattrini E, Delia G, Biosoffi S, Fogher C, Confalonieri M (2006) Expression of the Vitreoscilla haemoglobin (VHb)—encoding gene in transgenic white poplar: plant growth and biomass production, biochemical characterization and cell survival under submergence, oxidative and nitrosative stress conditions. Mol Breeding 17(3):201–216

    Article  CAS  Google Scholar 

  • Zhang GC, Zou CS, Wang ZY (2005a) Transformation system of chimeric gene for spider insecticidal peptide and Bt. of Populus euramericana cv. “114/69”. J Northeast For Univ 33(6):43–44

    Google Scholar 

  • Zhang Q, Zhang ZY, Lin SZ, Lin YZ (2005b) Resistance of transgenic hybrid triploids in Populus tomentosa Carr against 3 species of Lepidopterans following two winter dormancies conferred by high level expression of cowpea trypsin inhibitor gene. Silvae Genet 54(3):108–116

    Article  Google Scholar 

  • Zhang BY, Su XH, Li YL, Zhang YA, Qu LJ, Wang YZ, Tian YC (2006) Production of Populus alba × P. glandulosa with a coleopterous insect resistant gene and analysis of insect resistance. J Beijing For Univ 28(2):102–105

    Google Scholar 

  • Zhang TT, Song YZ, Liu YD, Guo XQ, Zhu CX, Wen FJ (2008) Overexpression of phospholipase Dα gene enhances drought and salt tolerance of Populus tomentosa. Chin Sci Bull 53:3656–3665

    Article  CAS  Google Scholar 

  • Zhang J, Movahedi A, Sang M, Wei Z, Xu J, Wang X, Wu X, Wang M, Yin T, Zhuge Q (2017) Functional analyses of NDPK2 in Populus trichocarpa and overexpression of PtNDPK2 enhances growth and tolerance to abiotic stresses in transgenic poplar. Plant Physiol Biochem 117:61–74

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Ding C, Wang Y, Chu Y, Zhang B, Huang Q, Su X (2018) Overexpression of transcription factor genes improves tolerance to drought stress in transgenic Populus × euramericana. J Plant Pathol Microbiol. https://doi.org/10.4172/2157-7471-c2-012

    Article  Google Scholar 

  • Zhang et al (2019) Over-expression of a serine hydroxymethyl transferase increases biomass production and reduces recalcitrance in the bioenergy crop Populus. Sustain Energy Fuels 3:195

    Article  CAS  Google Scholar 

  • Zheng JB, Zhang YM, Yang WZ, Pei D, Tian YC, Mang KQ (1995) Plant regeneration from excised leaves of poplar hybrid 741 and transformation with insect resistant Bt. toxin gene. J Hebei Agri Univ 18:20–25

    Google Scholar 

  • Zhong RQ, Morrison WH, Himmlsbach DS, Poole FL, Ye ZH, Zhong RQ, Ye ZH (2000) Essential role of caffeoyl-coenzyme A-O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124(2):563–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Jacobs TB, Xue LJ, Harding SA, Tsai CJ (2015) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 208:298–301. https://doi.org/10.1111/nph.13470

    Article  CAS  PubMed  Google Scholar 

  • Zou WH, Zhao QA, Cui DC, Wang B (2006) Transformation of Populus deltoides with anti-PLD gamma gene and chitinase gene. Sci Silvae Sinicae 42(1):37–42

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AKT and DKS conceived the idea, developed the framework and edited the manuscript; NP, RKS, GA and AG collected and compiled the literature; PK did the editing part and developed figures.

Corresponding author

Correspondence to Ajay K. Thakur.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, A.K., Kumar, P., Parmar, N. et al. Achievements and prospects of genetic engineering in poplar: a review. New Forests 52, 889–920 (2021). https://doi.org/10.1007/s11056-021-09836-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-021-09836-3

Keywords

Navigation