Skip to main content

Advertisement

Log in

Rosmarinic Acid Ameliorates Depressive-Like Behaviors in a Rat Model of CUS and Up-Regulates BDNF Levels in the Hippocampus and Hippocampal-Derived Astrocytes

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Rosmarinic acid (RA), a primary constituent of a Chinese herbal medicine, has been shown to have some therapeutic effects in an animal model of depression, but its underlying mechanisms are poorly understood. Sprague–Dawley rats were exposed to chronic unpredictable stress (CUS) for 21 days, and received RA for 14 days from the last week of CUS, then the behavioral changes, hippocampal pERK1/2 and BDNF levels were observed. Rats were further treated with U0126 (an ERK1/2 phosphorylation inhibitor) 30 min before RA treatment to assess the effects of RA and ERK1/2 signaling in depressive-like behavior and hippocampal BDNF levels. In addition, brains of newly born Sprague–Dawley rats were used to harvest and expand hippocampal astrocytes. Cells were exposed to different concentrations of RA (sham, 1, 5, 10, 20, and 40 μg/mL) or U0126 (2 μM as a final concentration) + RA (sham, 1, 5, 10, 20, and 40 μg/mL) for 48 h, and the pERK1/2 and BDNF levels were assessed by western and ELISA assays. RA administration (10 mg/kg daily) reversed depressive-like behaviors in rats exposed to a chronic unpredictable stress paradigm and restored pERK1/2 protein expression and hippocampal brain-derived neurotrophic factor (BDNF). Moreover, in vitro experiments revealed that 20 μg/mL RA increased pERK1/2 and BDNF levels in cultured astrocytes. Interestingly, the effects of RA were inhibited by U0126. RA might be a useful treatment for depression and the changes in ERK1/2 signaling and BDNF levels may play a critical role in the pharmacological action of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gibson TB, Jing Y, Smith Carls G, Kim E, Bagalman JE, Burton WN, Tran QV, Pikalov A, Goetzel RZ (2010) Cost burden of treatment resistance in patients with depression. Am J Manag Care 16:370–377

    PubMed  Google Scholar 

  2. Greeven A, van Balkom AJ, van der Leeden R, Merkelbach JW, van den Heuvel OA, Spinhoven P (2009) Cognitive behavioral therapy versus paroxetine in the treatment of hypochondriasis: an 18-month naturalistic follow-up. J Behav Ther Exp Psychiatry 40:487–496

    Article  PubMed  Google Scholar 

  3. Swenson JR, O’Connor CM, Barton D, Van Zyl LT, Swedberg K, Forman LM, Gaffney M, Glassman AH (2003) Influence of depression and effect of treatment with sertraline on quality of life after hospitalization for acute coronary syndrome. Am J Cardiol 92:1271–1276

    Article  PubMed  CAS  Google Scholar 

  4. Leucht C, Huhn M, Leucht S (2012) Amitriptyline versus placebo for major depressive disorder. Cochrane Database Syst Rev 12:CD009138

    PubMed  Google Scholar 

  5. Murata A, Kanbayashi T, Shimizu T, Miura M (2012) Risk factors for drug nonadherence in antidepressant-treated patients and implications of pharmacist adherence instructions for adherence improvement. Patient Prefer Adherence 6:863–869

    Article  PubMed  Google Scholar 

  6. Berlim MT, Turecki G (2007) Definition, assessment, and staging of treatment-resistant refractory major depression: a review of current concepts and methods. Can J Psychiatry 52:46–54

    PubMed  Google Scholar 

  7. Brent DA, Birmaher B (2006) Treatment-resistant depression in adolescents: recognition and management. Child Adolesc Psychiatr Clin N Am 15:1015–1034

    Article  PubMed  Google Scholar 

  8. Ito N, Nagai T, Yabe T, Nunome S, Hanawa T, Yamada H (2006) Antidepressant-like activity of a Kampo (Japanese herbal) medicine, Koso-san (Xiang-Su-San), and its mode of action via the hypothalamic–pituitary–adrenal axis. Phytomedicine 13:658–667

    Article  PubMed  CAS  Google Scholar 

  9. Osakabe N, Yasuda A, Natsume M, Yoshikawa T (2004) Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 25:549–557

    Article  PubMed  CAS  Google Scholar 

  10. Sanbongi C, Takano H, Osakabe N, Sasa N, Natsume M, Yanagisawa R, Inoue KI, Sadakane K, Ichinose T, Yoshikawa T (2004) Rosmarinic acid in perilla extract inhibits allergic inflammation induced by mite allergen, in a mouse model. Clin Exp Allergy 34:971–977

    Article  PubMed  CAS  Google Scholar 

  11. Takeda H, Tsuji M, Inazu M, Egashira T, Matsumiya T (2002) Rosmarinic acid and caffeic acid produce antidepressive-like effect in the forced swimming test in mice. Eur J Pharmacol 449:261–267

    Article  PubMed  CAS  Google Scholar 

  12. Ito N, Yabe T, Gamo Y, Nagai T, Oikawa T, Yamada H, Hanawa T (2008) Rosmarinic acid from Perillae Herba produces an antidepressant-like effect in mice through cell proliferation in the hippocampus. Biol Pharm Bull 31:1376–1380

    Article  PubMed  CAS  Google Scholar 

  13. Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 23:7311–7316

    PubMed  CAS  Google Scholar 

  14. Hayley S, Poulter MO, Merali Z, Anisman H (2005) The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience 135:659–678

    Article  PubMed  CAS  Google Scholar 

  15. Feng SF, Shi TY, Fan Y, Wang WN, Chen YC, Tan QR (2012) Long-lasting effects of chronic rTMS to treat chronic rodent model of depression. Behav Brain Res 232:245–251

    Article  PubMed  Google Scholar 

  16. Han BH, Holtzman DM (2000) BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway. J Neurosci 20:5775–5781

    PubMed  CAS  Google Scholar 

  17. Murakami S, Imbe H, Morikawa Y, Kubo C, Senba E (2005) Chronic stress, as well as acute stress, reduces BDNF mRNA expression in the rat hippocampus but less robustly. Neurosci Res 53:129–139

    Article  PubMed  CAS  Google Scholar 

  18. Schmidt HD, Duman RS (2010) Peripheral BDNF produces antidepressant-like effects in cellular and behavioral models. Neuropsychopharmacology 35:2378–2391

    Article  PubMed  CAS  Google Scholar 

  19. Molteni R, Calabrese F, Cattaneo A, Mancini M, Gennarelli M, Racagni G, Riva MA (2009) Acute stress responsiveness of the neurotrophin BDNF in the rat hippocampus is modulated by chronic treatment with the antidepressant duloxetine. Neuropsychopharmacology 34:1523–1532

    Article  PubMed  CAS  Google Scholar 

  20. Gao LP, Wei HL, Zhao HS, Xiao SY, Zheng RL (2005) Antiapoptotic and antioxidant effects of rosmarinic acid in astrocytes. Pharmazie 60:62–65

    PubMed  CAS  Google Scholar 

  21. Wei R, Lin CM, Tu YY (2010) Strain-specific BDNF expression of rat primary astrocytes. J Neuroimmunol 220:90–98

    Article  PubMed  CAS  Google Scholar 

  22. Miklic S, Juric DM, Carman-Krzan M (2004) Differences in the regulation of BDNF and NGF synthesis in cultured neonatal rat astrocytes. Int J Dev Neurosci 22:119–130

    Article  PubMed  CAS  Google Scholar 

  23. Sironi L, Banfi C, Brioschi M, Gelosa P, Guerrini U, Nobili E, Gianella A, Paoletti R, Tremoli E, Cimino M (2006) Activation of NF-kB and ERK1/2 after permanent focal ischemia is abolished by simvastatin treatment. Neurobiol Dis 22:445–451

    Article  PubMed  CAS  Google Scholar 

  24. Du J, Wang Q, Hu B, Peng Z, Zhao Y, Ma L, Xiong L, Lu Y, Zhu X, Chen S (2010) Involvement of ERK 1/2 activation in electroacupuncture pretreatment via cannabinoid CB1 receptor in rats. Brain Res 1360:1–7

    Article  PubMed  CAS  Google Scholar 

  25. Koo JW, Duman RS (2008) IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 105:751–756

    Article  PubMed  CAS  Google Scholar 

  26. Slattery DA, Cryan JF (2012) Using the rat forced swim test to assess antidepressant-like activity in rodents. Nat Protoc 7:1009–1014

    Article  PubMed  CAS  Google Scholar 

  27. Wang HN, Peng Y, Tan QR, Wang HH, Chen YC, Zhang RG, Wang ZZ, Guo L, Liu Y, Zhang ZJ (2009) Free and Easy Wanderer Plus (FEWP), a polyherbal preparation, ameliorates PTSD-like behavior and cognitive impairments in stressed rats. Prog Neuropsychopharmacol Biol Psychiatry 33:1458–1463

    Article  PubMed  Google Scholar 

  28. Wang HN, Peng Y, Tan QR, Chen YC, Zhang RG, Qiao YT, Wang HH, Liu L, Kuang F, Wang BR, Zhang ZJ (2010) Quetiapine ameliorates anxiety-like behavior and cognitive impairments in stressed rats: implications for the treatment of posttraumatic stress disorder. Physiol Res 59:263–271

    PubMed  CAS  Google Scholar 

  29. Zhu H, Chen MF, Yu WJ, Wang WJ, Li F, Liu WC, Wo Y, Xia R, Ding WL (2012) Time-dependent changes in BDNF expression of pentylenetetrazole-induced hippocampal astrocytes in vitro. Brain Res 1439:1–6

    Article  PubMed  CAS  Google Scholar 

  30. Vostalova J, Zdarilova A, Svobodova A (2010) Prunella vulgaris extract and rosmarinic acid prevent UVB-induced DNA damage and oxidative stress in HaCaT keratinocytes. Arch Dermatol Res 302:171–181

    Article  PubMed  Google Scholar 

  31. Osakabe N, Takano H, Sanbongi C, Yasuda A, Yanagisawa R, Inoue K, Yoshikawa T (2004) Anti-inflammatory and anti-allergic effect of rosmarinic acid (RA); inhibition of seasonal allergic rhinoconjunctivitis (SAR) and its mechanism. BioFactors 21:127–131

    Article  PubMed  CAS  Google Scholar 

  32. Banasr M, Valentine GW, Li XY, Gourley SL, Taylor JR, Duman RS (2007) Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiatry 62:496–504

    Article  PubMed  CAS  Google Scholar 

  33. Potter GG, Wagner HR, Burke JR, Plassman BL, Welsh-Bohmer KA, Steffens DC (2013) Neuropsychological predictors of dementia in late-life major depressive disorder. Am J Geriatr Psychiatry 21:297–306

    Article  PubMed  Google Scholar 

  34. Deltheil T, Guiard BP, Cerdan J, David DJ, Tanaka KF, Reperant C, Guilloux JP, Coudore F, Hen R, Gardier AM (2008) Behavioral and serotonergic consequences of decreasing or increasing hippocampus brain-derived neurotrophic factor protein levels in mice. Neuropharmacology 55:1006–1014

    Article  PubMed  CAS  Google Scholar 

  35. Czubak A, Nowakowska E, Kus K, Burda K, Metelska J, Baer-Dubowska W, Cichocki M (2009) Influences of chronic venlafaxine, olanzapine and nicotine on the hippocampal and cortical concentrations of brain-derived neurotrophic factor (BDNF). Pharmacol Rep 61:1017–1023

    PubMed  CAS  Google Scholar 

  36. Peng Q, Masuda N, Jiang M, Li Q, Zhao M, Ross CA, Duan W (2008) The antidepressant sertraline improves the phenotype, promotes neurogenesis and increases BDNF levels in the R6/2 Huntington’s disease mouse model. Exp Neurol 210:154–163

    Article  PubMed  CAS  Google Scholar 

  37. Shirayama Y, Chen AC, Nakagawa S, Russell DS, Duman RS (2002) Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression. J Neurosci 22:3251–3261

    PubMed  CAS  Google Scholar 

  38. Paizanis E, Renoir T, Lelievre V, Saurini F, Melfort M, Gabriel C, Barden N, Mocaer E, Hamon M, Lanfumey L (2010) Behavioural and neuroplastic effects of the new-generation antidepressant agomelatine compared to fluoxetine in glucocorticoid receptor-impaired mice. Int J Neuropsychopharmacol 13:759–774

    Article  PubMed  Google Scholar 

  39. Massa SM, Yang T, Xie Y, Shi J, Bilgen M, Joyce JN, Nehama D, Rajadas J, Longo FM (2010) Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J Clin Invest 120:1774–1785

    Article  PubMed  CAS  Google Scholar 

  40. Duric V, Banasr M, Licznerski P, Schmidt HD, Stockmeier CA, Simen AA, Newton SS, Duman RS (2010) A negative regulator of MAP kinase causes depressive behavior. Nat Med 16:1328–1332

    Article  PubMed  CAS  Google Scholar 

  41. Fellin T (2009) Communication between neurons and astrocytes: relevance to the modulation of synaptic and network activity. J Neurochem 108:533–544

    Article  PubMed  CAS  Google Scholar 

  42. Conti B, Maier R, Barr AM, Morale MC, Lu X, Sanna PP, Bilbe G, Hoyer D, Bartfai T (2007) Region-specific transcriptional changes following the three antidepressant treatments electro convulsive therapy, sleep deprivation and fluoxetine. Mol Psychiatry 12:167–189

    Article  PubMed  CAS  Google Scholar 

  43. Sillaber I, Panhuysen M, Henniger MS, Ohl F, Kuhne C, Putz B, Pohl T, Deussing JM, Paez-Pereda M, Holsboer F (2008) Profiling of behavioral changes and hippocampal gene expression in mice chronically treated with the SSRI paroxetine. Psychopharmacology 200:557–572

    Article  PubMed  CAS  Google Scholar 

  44. Di Benedetto B, Kuhn R, Nothdurfter C, Rein T, Wurst W, Rupprecht R (2012) N-desalkylquetiapine activates ERK1/2 to induce GDNF release in C6 glioma cells: a putative cellular mechanism for quetiapine as antidepressant. Neuropharmacology 62:209–216

    Article  PubMed  Google Scholar 

  45. Li B, Zhang S, Li M, Hertz L, Peng L (2009) Chronic treatment of astrocytes with therapeutically relevant fluoxetine concentrations enhances cPLA2 expression secondary to 5-HT2B-induced, transactivation-mediated ERK1/2 phosphorylation. Psychopharmacology 207:1–12

    Article  PubMed  CAS  Google Scholar 

  46. Allaman I, Fiumelli H, Magistretti PJ, Martin JL (2011) Fluoxetine regulates the expression of neurotrophic/growth factors and glucose metabolism in astrocytes. Psychopharmacology 216:75–84

    Article  PubMed  CAS  Google Scholar 

  47. Hisaoka K, Takebayashi M, Tsuchioka M, Maeda N, Nakata Y, Yamawaki S (2007) Antidepressants increase glial cell line-derived neurotrophic factor production through monoamine-independent activation of protein tyrosine kinase and extracellular signal-regulated kinase in glial cells. J Pharmacol Exp Ther 321:148–157

    Article  PubMed  CAS  Google Scholar 

  48. Chkhartishvili E, Maglakelidze N, Babilodze M, Chijavadze E, Nachkebia N (2011) Changes of open field behavior in animal model of depression. Georgian Med News 11:107–112

    PubMed  CAS  Google Scholar 

  49. Dong Z, Bai Y, Wu X, Li H, Gong B, Howland JG, Huang Y, He W, Li T, Wang YT (2013) Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology 64:65–73

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81201054 and 81201041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danmin Miao.

Additional information

Xiang Jin and Peng Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, X., Liu, P., Yang, F. et al. Rosmarinic Acid Ameliorates Depressive-Like Behaviors in a Rat Model of CUS and Up-Regulates BDNF Levels in the Hippocampus and Hippocampal-Derived Astrocytes. Neurochem Res 38, 1828–1837 (2013). https://doi.org/10.1007/s11064-013-1088-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-013-1088-y

Keywords

Navigation