Skip to main content

Advertisement

Log in

Effect of Efflux Transporter Inhibition on the Distribution of Fluconazole in the Rat Brain

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Multidrug resistance-associated proteins (MRPs) and organic anion transporters (OATs) are expressed on the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB), preventing the entry of or the pumping out of numerous molecules. Fluconazole is widely used to treat fungal meningoencephalitis. The effect of these transporters on the distribution of fluconazole in the brain is unclear. We used microdialysis to compare the distribution of fluconazole in the rat brain with and without co-administration of probenecid, a MRP and OAT inhibitor. Additionally, we also observed the difference in fluconazole distribution between the two barriers. The results showed that probenecid increased the penetration of fluconazole into the BBB but did not alter the penetration of fluconazole into the BCSFB of rats. The penetration of the BBB and BCSFB by fluconazole did not statistically differ according to physiological condition. These results demonstrate that transporters that can be inhibited by probenecid may be involved in fluconazole resistance at the BBB and provide a laboratory basis for predicting brain extracellular fluid (ECF) concentration using the cerebrospinal fluid (CSF) concentration of fluconazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goralska K, Blaszkowska J (2015) Parasites and fungi as risk factors for human and animal health. Ann Parasitol 61:207–220

    PubMed  Google Scholar 

  2. Liu TB, Perlin DS, Xue C (2012) Molecular mechanisms of cryptococcal meningitis. Virulence 3(2):173–181

    Article  PubMed  PubMed Central  Google Scholar 

  3. Prasad R, Rawal MK (2014) Efflux pump proteins in antifungal resistance. Front Pharmacol 5:202

    Article  PubMed  PubMed Central  Google Scholar 

  4. Saunders NR, Habgood MD, Mollgard K, Dziegielewska KM (2016) The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system. F1000Res 5:1–15

    Article  Google Scholar 

  5. Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22:291–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. John RP, William ED, Francoise D et al (2010) Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis 50:291–322

    Article  Google Scholar 

  7. Nau R, Sorgel F, Eiffert H (2010) Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections. Clin Microbiol Rev 23:858–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kethireddy S, Andes D (2007) CNS pharmacokinetics of antifungal agents. Expert Opin Drug Metab Toxicol 3:573–581

    Article  CAS  PubMed  Google Scholar 

  9. Koks CH, Meenhorst PL, Hillebrand MJ, Bult A, Beijnen JH (1996) Pharmacokinetics of fluconazole in saliva and plasma after administration of an oral suspension and capsules. Antimicrob Agents Chemother 40:1935–1937

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Azeredo FJ, de Araujo BV, Haas SE, Torres B, Pigatto M, de Andrade C, Dalla CT (2012) Comparison of fluconazole renal penetration levels in healthy and Candida albicans-infected Wistar rats. Antimicrob Agents Chemother 56:5852–5857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee CH, Yeh PH, Tsai TH (2002) Hepatobiliary excretion of fluconazole and its interaction with cyclosporin A in rat blood and bile using microdialysis. Int J Pharm 241:367–373

    Article  CAS  PubMed  Google Scholar 

  12. Mathy FX, Denis N, Roger KV, Preat V (2005) Fluconazole distribution in rat dermis following intravenous and topical application: a microdialysis study. J Pharm Sci 94:770–780

    Article  CAS  PubMed  Google Scholar 

  13. Mahringer A, Fricker G (2016) ABC transporters at the blood-brain barrier. Expert Opin Drug Metab Toxicol 12:499–508

    Article  CAS  PubMed  Google Scholar 

  14. Maeda K, Tian Y, Fujita T, Ikeda Y, Kumagai Y, Kondo T, Tanabe K, Nakayama H, Horita S, Kusuhara H, Sugiyama Y (2014) Inhibitory effects of p-aminohippurate and probenecid on the renal clearance of adefovir and benzylpenicillin as probe drugs for organic anion transporter (OAT) 1 and OAT3 in humans. Eur J Pharm Sci 59:94–103

    Article  CAS  PubMed  Google Scholar 

  15. Wang C, Hong Z, Chen Y (2015) Involvement of p38 MAPK in the drug resistance of refractory epilepsy through the regulation multidrug resistance-associated protein 1. Neurochem Res 40:1546–1553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Westerhout J, van den Berg DJ, Hartman R, Danhof M, de Lange EC (2014) Prediction of methotrexate CNS distribution in different species—influence of disease conditions. Eur J Pharm Sci 57:11–24

    Article  CAS  PubMed  Google Scholar 

  17. Chen X, Loryan I, Payan M, Keep RF, Smith DE, Hammarlund-Udenaes M (2014) Effect of transporter inhibition on the distribution of cefadroxil in rat brain. Fluids Barriers CNS 11:25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Potschka H, Baltes S, Loscher W (2004) Inhibition of multidrug transporters by verapamil or probenecid does not alter blood-brain barrier penetration of levetiracetam in rats. Epilepsy Res 58:85–91

    Article  CAS  PubMed  Google Scholar 

  19. Yang H, Wang Q, Elmquist WF (1996) Fluconazole distribution to the brain: a crossover study in freely-moving rats using in vivo microdialysis. Pharm Res 13:1570–1575

    Article  CAS  PubMed  Google Scholar 

  20. Kim SS, Im HT, Kang IM, Lee HS, Lee HW, Cho SH, Kim JB, Lee KT (2007) An optimized analytical method of fluconazole in human plasma by high-performance liquid chromatography with ultraviolet detection and its application to a bioequivalence study. J Chromatogr B Analyt Technol Biomed Life Sci 852:174–179

    Article  CAS  PubMed  Google Scholar 

  21. Song JJ, Li W, Wang Z, Tian DD, Yin WY (2015) Quantitative determination of fluconazole by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) in human plasma and its application to a pharmacokinetic study. Drug Res (Stuttg) 65:52–56

    CAS  Google Scholar 

  22. Debruyne D, Ryckelynck JP (1993) Clinical pharmacokinetics of fluconazole. Clin Pharmacokinet 24:10–27

    Article  CAS  PubMed  Google Scholar 

  23. Sagatova AA, Keniya MV, Wilson RK, Monk BC, Tyndall JD (2015) Structural insights into binding of the antifungal drug fluconazole to saccharomyces cerevisiae lanosterol 14α-demethylase. Antimicrob Agents Chemother 59(8):4982–4989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Watson PF, Rose ME, Ellis SW, England H, Kelly SL (1989) Defective sterol C5-6 desaturation and azole resistance: a new hypothesis for the mode of action of azole antifungals. Biochem Biophys Res Commun 164(3):1170–1175

    Article  CAS  PubMed  Google Scholar 

  25. Jezequel SG (1994) Fluconazole: interspecies scaling and allometric relationships of pharmacokinetic properties. J Pharm Pharmacol 46:196–199

    Article  CAS  PubMed  Google Scholar 

  26. Deguchi Y, Nozawa K, Yamada S, Yokoyama Y, Kimura R (1997) Quantitative evaluation of brain distribution and blood-brain barrier efflux transport of probenecid in rats by microdialysis: possible involvement of the monocarboxylic acid transport system. J Pharmacol Exp Ther 280:551–560

    CAS  PubMed  Google Scholar 

  27. Kusuhara H, Sugiyama Y (2002) Role of transporters in the tissue-selective distribution and elimination of drugs: transporters in the liver, small intestine, brain and kidney. J Control Release 78:43–54

    Article  CAS  PubMed  Google Scholar 

  28. Redzic Z (2011) Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8:3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bakos E, Evers R, Sinko E, Varadi A, Borst P, Sarkadi B (2000) Interactions of the human multidrug resistance proteins MRP1 and MRP2 with organic anions. Mol Pharmacol 57:760–768

    CAS  PubMed  Google Scholar 

  30. Sugiyama D, Kusuhara H, Shitara Y, Abe T, Meier PJ, Sekine T, Endou H, Suzuki H, Sugiyama Y (2001) Characterization of the efflux transport of 17beta-estradiol-D-17beta-glucuronide from the brain across the blood-brain barrier. J Pharmacol Exp Ther 298:316–322

    CAS  PubMed  Google Scholar 

  31. Emanuelsson BM, Paalzow LK (1988) Dose-dependent pharmacokinetics of probenecid in the rat. Biopharm Drug Dispos 9:59–70

    Article  CAS  PubMed  Google Scholar 

  32. Imbert F, Jardin M, Fernandez C, Gantier JC, Dromer F, Baron G, Mentre F, Van Beijsterveldt L, Singlas E, Gimenez F (2003) Effect of efflux inhibition on brain uptake of itraconazole in mice infected with Cryptococcus neoformans. Drug Metab Dispos 31:319–325

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the General Hospital of People’s Liberation Army grant CWS11J064. We appreciate the technical and equipment support provided by Dr. Zheng Yong from the Academy of Military Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiatang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zheng, N., Zhang, J. et al. Effect of Efflux Transporter Inhibition on the Distribution of Fluconazole in the Rat Brain. Neurochem Res 42, 2274–2281 (2017). https://doi.org/10.1007/s11064-017-2240-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2240-x

Keywords

Navigation