Skip to main content

Advertisement

Log in

Silencing VEGF-B Diminishes the Neuroprotective Effect of Candesartan Treatment After Experimental Focal Cerebral Ischemia

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The pro-survival effect of VEGF-B has been documented in different in vivo and in vitro models. We have previously shown an enhanced VEGF-B expression in response to candesartan treatment after focal cerebral ischemia. In this study, we aimed to silence VEGF-B expression to assess its contribution to candesartan’s benefit on stroke outcome. Silencing VEGF-B expression was achieved by bilateral intracerebroventricular injections of lentiviral particles containing short hairpin RNA (shRNA) against VEGF-B. Two weeks after lentiviral injections, rats were subjected to either 90 min or 3 h of middle cerebral artery occlusion (MCAO) and randomized to intravenous candesartan (1 mg/kg) or saline at reperfusion. Animals were sacrificed at 24 or 72 h and brains were collected and analyzed for hemoglobin (Hb) excess and infarct size, respectively. Functional outcome at 24, 48 and 72 h was assessed blindly. Candesartan treatment improved neurobehavioral and motor function, and decreased infarct size and Hb. While silencing VEGF-B expression diminished candesartan’s neuroprotective effect, candesartan-mediated vascular protection was maintained even in the absence of VEGF-B suggesting that this growth factor is not the mediator of candesartan’s vascular protective effects. However, VEGF-B is a mediator of neuroprotection achieved by candesartan and represents a potential drug target to improve stroke outcome. Further studies are needed to elucidate the underlying molecular mechanisms of VEGF-B in neuroprotection and recovery after ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ARBs:

Angiotensin II type-1 receptor blockers

KD:

VEGF-B knockdown

MCAO:

Middle cerebral artery occlusion

NTC:

Non-targeting control

shRNA:

Short hairpin RNA

VEGF-B:

Vascular endothelial growth factor-B

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2014) Heart disease and stroke statistics—2014 update: a report from the american heart association. Circulation 129:e28–e292

    Article  PubMed  Google Scholar 

  2. Engelhorn T, Goerike S, Doerfler A, Okorn C, Forsting M, Heusch G, Schulz R (2004) The angiotensin II type 1-receptor blocker candesartan increases cerebral blood flow, reduces infarct size, and improves neurologic outcome after transient cerebral ischemia in rats. J Cereb Blood Flow Metab 24:467–474

    Article  PubMed  Google Scholar 

  3. Brdon J, Kaiser S, Hagemann F, Zhao Y, Culman J, Gohlke P (2007) Comparison between early and delayed systemic treatment with candesartan of rats after ischaemic stroke. J Hypertens 25:187–196

    Article  CAS  PubMed  Google Scholar 

  4. Kozak A, Ergul A, El-Remessy AB, Johnson MH, Machado LS, Elewa HF, Abdelsaid M, Wiley DC, Fagan SC (2009) Candesartan augments ischemia-induced proangiogenic state and results in sustained improvement after stroke. Stroke 40:1870–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Elewa HF, Kozak A, Johnson MH, Ergul A, Fagan SC (2007) Blood pressure lowering after experimental cerebral ischemia provides neurovascular protection. J Hypertens 25:855–859

    Article  CAS  PubMed  Google Scholar 

  6. Fagan SC, Kozak A, Hill WD, Pollock DM, Xu L, Johnson MH, Ergul A, Hess DC (2006) Hypertension after experimental cerebral ischemia: candesartan provides neurovascular protection. J Hypertens 24:535–539

    Article  CAS  PubMed  Google Scholar 

  7. Guan W, Kozak A, El-Remessy AB, Johnson MH, Pillai BA, Fagan SC (2011) Acute treatment with candesartan reduces early injury after permanent middle cerebral artery occlusion. Transl Stroke Res 2:179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yamakawa H, Jezova M, Ando H, Saavedra JM (2003) Normalization of endothelial and inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab 23:371–380

    Article  CAS  PubMed  Google Scholar 

  9. Guan W, Somanath PR, Kozak A, Goc A, El-Remessy AB, Ergul A, Johnson MH, Alhusban A, Soliman S, Fagan SC (2011) Vascular protection by angiotensin receptor antagonism involves differential VEGF expression in both hemispheres after experimental stroke. PLoS ONE 6:e24551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Soliman S, El-Remessy A, Ishrat T, Pillai A, Somanath P, Ergul A, Fagan S (2014) Candesartan induces a prolonged proangiogenic effect and augments endothelium-mediated neuroprotection after oxygen and glucose deprivation: role of VEGF-A and B. J Pharmacol Exp Ther 349:444–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hamai M, Iwai M, Ide A, Tomochika H, Tomono Y, Mogi M, Horiuchi M (2006) Comparison of inhibitory action of candesartan and enalapril on brain ischemia through inhibition of oxidative stress. Neuropharmacology 51:822–828

    Article  CAS  PubMed  Google Scholar 

  12. Ishrat T, Pillai B, Soliman S, Fouda AY, Kozak A, Johnson MH, Ergul A, Fagan SC (2015) Low-dose candesartan enhances molecular mediators of neuroplasticity and subsequent functional recovery after ischemic stroke in rats. Mol Neurobiol 51:1542–1553

    Article  CAS  PubMed  Google Scholar 

  13. Fouda AY, Alhusban A, Ishrat T, Pillai B, Eldahshan W, Waller JL, Ergul A, Fagan SC (2017) Brain-derived neurotrophic factor knockdown blocks the angiogenic and protective effects of angiotensin modulation after experimental stroke. Mol Neurobiol 54:661–670

    Article  CAS  PubMed  Google Scholar 

  14. Greenberg ME, Xu B, Lu B, Hempstead BL (2009) New insights in the biology of BDNF synthesis and release: implications in CNS function. J Neurosci 29:12764–12767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, Greenberg DA (2003) VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111:1843–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He J, Zhang Y, Xu T, Zhao Q, Wang D, Chen CS, Tong W, Liu C, Ju Z, Peng Y, Peng H, Li Q, Geng D, Zhang J, Li D, Zhang F, Guo L, Sun Y, Wang X, Cui Y, Li Y, Ma D, Yang G, Gao Y, Yuan X, Bazzano LA, Chen J (2014) Effects of immediate blood pressure reduction on death and major disability in patients with acute ischemic stroke: the CATIS randomized clinical trial. JAMA 311:479–489

    Article  CAS  PubMed  Google Scholar 

  17. Sandset EC, Bath PM, Boysen G, Jatuzis D, Korv J, Luders S, Murray GD, Richter PS, Roine RO, Terent A, Thijs V, Berge E, Group SS (2011) The angiotensin-receptor blocker candesartan for treatment of acute stroke (SCAST): a randomised, placebo-controlled, double-blind trial. Lancet 377:741–750

    Article  CAS  PubMed  Google Scholar 

  18. Li Y, Zhang F, Nagai N, Tang Z, Zhang S, Scotney P, Lennartsson J, Zhu C, Qu Y, Fang C, Hua J, Matsuo O, Fong GH, Ding H, Cao Y, Becker KG, Nash A, Heldin CH, Li X (2008) VEGF-B inhibits apoptosis via VEGFR-1-mediated suppression of the expression of BH3-only protein genes in mice and rats. J Clin Invest 118:913–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poesen K, Lambrechts D, Van Damme P, Dhondt J, Bender F, Frank N, Bogaert E, Claes B, Heylen L, Verheyen A, Raes K, Tjwa M, Eriksson U, Shibuya M, Nuydens R, Van Den Bosch L, Meert T, D’Hooge R, Sendtner M, Robberecht W, Carmeliet P (2008) Novel role for vascular endothelial growth factor (VEGF) receptor-1 and its ligand VEGF-B in motor neuron degeneration. J Neurosci 28:10451–10459

    Article  CAS  PubMed  Google Scholar 

  20. Yamazaki Y, Morita T (2006) Molecular and functional diversity of vascular endothelial growth factors. Mol Divers 10:515–527

    Article  CAS  PubMed  Google Scholar 

  21. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D (1996) Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 87:3336–3343

    CAS  PubMed  Google Scholar 

  22. Clauss M, Weich H, Breier G, Knies U, Rockl W, Waltenberger J, Risau W (1996) The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 271:17629–17634

    Article  CAS  PubMed  Google Scholar 

  23. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P (2002) Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8:831–840

    Article  CAS  PubMed  Google Scholar 

  24. Autiero M, Waltenberger J, Communi D, Kranz A, Moons L, Lambrechts D, Kroll J, Plaisance S, De Mol M, Bono F, Kliche S, Fellbrich G, Ballmer-Hofer K, Maglione D, Mayr-Beyrle U, Dewerchin M, Dombrowski S, Stanimirovic D, Van Hummelen P, Dehio C, Hicklin DJ, Persico G, Herbert JM, Communi D, Shibuya M, Collen D, Conway EM, Carmeliet P (2003) Role of PlGF in the intra- and intermolecular cross talk between the VEGF receptors Flt1 and Flk1. Nat Med 9:936–943

    Article  CAS  PubMed  Google Scholar 

  25. Pipp F, Heil M, Issbrucker K, Ziegelhoeffer T, Martin S, van den Heuvel J, Weich H, Fernandez B, Golomb G, Carmeliet P, Schaper W, Clauss M (2003) VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ Res 92:378–385

    Article  CAS  PubMed  Google Scholar 

  26. Autiero M, Luttun A, Tjwa M, Carmeliet P (2003) Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 1:1356–1370

    Article  CAS  PubMed  Google Scholar 

  27. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, VandenDriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7:575–583

    Article  CAS  PubMed  Google Scholar 

  28. Li X, Lee C, Tang Z, Zhang F, Arjunan P, Li Y, Hou X, Kumar A, Dong L (2009) VEGF-B: a survival, or an angiogenic factor? Cell Adhes Migr 3:322–327

    Article  Google Scholar 

  29. Zhang F, Tang Z, Hou X, Lennartsson J, Li Y, Koch AW, Scotney P, Lee C, Arjunan P, Dong L, Kumar A, Rissanen TT, Wang B, Nagai N, Fons P, Fariss R, Zhang Y, Wawrousek E, Tansey G, Raber J, Fong GH, Ding H, Greenberg DA, Becker KG, Herbert JM, Nash A, Yla-Herttuala S, Cao Y, Watts RJ, Li X (2009) VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis. Proc Natl Acad Sci USA 106:6152–6157

    Article  CAS  PubMed  Google Scholar 

  30. Sun Y, Jin K, Childs JT, Xie L, Mao XO, Greenberg DA (2004) Increased severity of cerebral ischemic injury in vascular endothelial growth factor-B-deficient mice. J Cereb Blood Flow Metab 24:1146–1152

    Article  CAS  PubMed  Google Scholar 

  31. Xie L, Mao X, Jin K, Greenberg DA (2013) Vascular endothelial growth factor-B expression in postischemic rat brain. Vasc Cell 5:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jean LeBlanc N, Guruswamy R, ElAli A (2017) Vascular endothelial growth factor isoform-B stimulates neurovascular repair after ischemic stroke by promoting the function of pericytes via vascular endothelial growth factor receptor-1. Mol Neurobiol 55:3611–3626

    PubMed  Google Scholar 

  33. Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476

    Article  CAS  PubMed  Google Scholar 

  34. Watanabe T, Okuda Y, Nonoguchi N, Zhao MZ, Kajimoto Y, Furutama D, Yukawa H, Shibata MA, Otsuki Y, Kuroiwa T, Miyatake S (2004) Postischemic intraventricular administration of FGF-2 expressing adenoviral vectors improves neurologic outcome and reduces infarct volume after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 24:1205–1213

    Article  CAS  PubMed  Google Scholar 

  35. Machado LS, Sazonova IY, Kozak A, Wiley DC, El-Remessy AB, Ergul A, Hess DC, Waller JL, Fagan SC (2009) Minocycline and tissue-type plasminogen activator for stroke: assessment of interaction potential. Stroke 40:3028–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ishrat T, Pillai B, Ergul A, Hafez S, Fagan SC (2013) Candesartan reduces the hemorrhage associated with delayed tissue plasminogen activator treatment in rat embolic stroke. Neurochem Res 38:2668–2677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fagan SC, Lapchak PA, Liebeskind DS, Ishrat T, Ergul A (2013) Recommendations for preclinical research in hemorrhagic transformation. Transl Stroke Res 4:322–327

    Article  PubMed  Google Scholar 

  38. Fouda AY, Alhusban A, Ishrat T, Pillai B, Eldahshan W, Waller JL, Ergul A, Fagan SC (2016) Brain-derived neurotrophic factor knockdown blocks the angiogenic and protective effects of angiotensin modulation after experimental stroke. Mol Neurobiol 54:661–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Alhusban A, Kozak A, Ergul A, Fagan SC (2013) AT1 receptor antagonism is proangiogenic in the brain: BDNF a novel mediator. J Pharmacol Exp Ther 344:348–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiong Y, Mahmood A, Chopp M (2010) Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs 11:298–308

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ishrat T, Kozak A, Alhusban A, Pillai B, Johnson MH, El-Remessy AB, Ergul A, Fagan SC (2014) Role of matrix metalloproteinase activity in the neurovascular protective effects of angiotensin antagonism. Stroke Res Treat 2014:560491

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health [RO1-NS063965 (SCF), RO1-NS083559 (AE), R01NS097800-01 (TI)], Veterans Affairs Merit Review [BX-000891 (SCF), BX-BX000347 (AE)], and the American Heart Association (12PRE12030197 (SS)). Adviye Ergul is a Research Career Scientist at the Charlie Norwood Veterans Affairs Medical Center in Augusta, Georgia. The authors gratefully acknowledge Abdelrahman Fouda for the technical assistance with animal tissue collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tauheed Ishrat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Disclosures

The contents do not represent the views of the Department of Veterans Affairs or the United States government.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishrat, T., Soliman, S., Eldahshan, W. et al. Silencing VEGF-B Diminishes the Neuroprotective Effect of Candesartan Treatment After Experimental Focal Cerebral Ischemia. Neurochem Res 43, 1869–1878 (2018). https://doi.org/10.1007/s11064-018-2604-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2604-x

Keywords

Navigation