Skip to main content

Advertisement

Log in

The Relationship Between Protein S-Nitrosylation and Human Diseases: A Review

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

S-nitrosylation (SNO) is a covalent post-translational oxidative modification. The reaction is the nitroso group (–NO) to a reactive cysteine thiol within a protein to form the SNO. In recent years, a variety of proteins in human body have been found to undergo thiol nitrosylation under specific conditions. Protein SNO, which is closely related to cardiovascular disease, Parkinson’s syndrome, Alzheimer’s disease and tumors, plays an important role in regulatory mechanism of protein function in both physiological and pathological pathways, such as in cellular homeostasis and metabolism. This review discusses possible molecular mechanisms protein SNO modification, such as the role of NO in vivo and the formation mechanism of SNO, with particular emphasis on mechanisms utilized by SNO to cause certain diseases of human. Importantly, the effect of SNO on diseases is multifaceted and multi-channel, and its critical value in vivo is not well defined. Intracellular redox environment is also a key factor affecting its level. Therefore, we should pay more attention to the equilibrium relationship between SNO and denitrosylation pathway in the future researches. These findings provide theoretical support for the improvement or treatment of diseases from the point of view of SNO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA (2009) Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal 11:2717–2739

    CAS  PubMed  Google Scholar 

  2. Liu L, Yan Y, Zeng J, Hanes MA, Ahearn G, McMahon TJ, Dickfeld T, Marshall HE, Que LG, Stamler JS (2004) Essential roles of S-nitrosothiols in vascular homeostasis and endotoxic shock. Cell 116:617–628

    CAS  PubMed  Google Scholar 

  3. Baldelli S, Ciriolo MR (2016) Altered S-nitrosylation of p53 is responsible for impaired antioxidant response in skeletal muscle during aging. Aging 8:3450–3467

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Valek L, Heidler J, Scheving R, Wittig I, Tegeder I (2019) Nitric oxide contributes to protein homeostasis by S-nitrosylations of the chaperone HSPA8 and the ubiquitin ligase UBE2D. Redox Biol 20:217–235

    CAS  PubMed  Google Scholar 

  5. Wu BW (2016) Peroxiredoxin-2 nitrosylation facilitates cardiomyogenesis of mouse embryonic stem cells via XBP-1s/PI3K pathway. Free Radic Biol Med 97:179–219

    CAS  PubMed  Google Scholar 

  6. DelaTorre A, Schroeder RA, Kuo PC (1997) Alteration of NF-kappa B p50 DNA binding kinetics by S-nitrosylation. Biochem Biophys Res Commun 238:703–706

    CAS  PubMed  Google Scholar 

  7. Li J (2016) Nitrosylated proteasome degradation pathway can inhibit the activity of cell cycle dependent protein kinase 5. Adv Physiol Sci 47:239

    Google Scholar 

  8. Yang HN, Yan XQ, Lv LX, Han D, Hu SQ, Xu T (2019) Study on the mechanism of kainic acid-induced denitrosylation of Procaspase 3 in rat hippocampus CA1 region. Med J Commun 5:433–437

    Google Scholar 

  9. Mannick JB, Hausladen A, Liu LM, Hess DT, Zeng M, Miao QX, Kane LS, Gow AJ, Stamler JS (1999) Fas-induced caspase denitrosylation. Science 284:651–654

    CAS  PubMed  Google Scholar 

  10. Mannick JB, Schonhoff CM, Papeta N, Ghafourifar P, Szibor M, Fang K, Gaston B (2001) S-Nitrosylation of mitochondrial caspases. J Cell Biol 154:1111–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsushita K, Morrell CN, Cambien B, Yang SX, Yamakuchi M, Bao C, Hara MR, Quick RA, Cao W, O’Rourke B, Lowenstein JM, Pevsner J, Wagner DD, Lowenstein CJ (2003) Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115:139–150

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Han T, Tang Y, Li J, Xue B, Gong L, Yu X, Liu C (2017) Nitric oxide donor protects against acetic acid-induced gastric ulcer in rats via S-nitrosylation of TRPV1on vagus nerve. Sci Rep 7:1898

    Google Scholar 

  13. Kawashima S, Yokoyama M (2004) Dysfunctuon of endothelial nitric oxide synthase and atherosclerosis. Arterioscler Thromb Vasc Biol 24:998–1005

    CAS  PubMed  Google Scholar 

  14. Li J, Feng J, Wang X (2017) Regulation of vascular function by nitric oxide-related S-nitrosylation. Acta Physiol Sin 69:557–570

    Google Scholar 

  15. Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Giuffrida Stella AM (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Neurosci 8:766–775

    CAS  Google Scholar 

  16. Murad F (1986) Cyclic guanosine-monophosphate as a mediator of vasodilation. J Clin Investig 78:1–5

    CAS  PubMed  Google Scholar 

  17. Gonzalez DR, Treuer A, Sun QA, Stamler JS, Hare JM (2009) S-nitrosylation of cardiac ion channels. J Cardiovasc Pharmacol 54:188–195

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Benhar M, Forrester MT, Stamler JS (2009) Protein denitrosylation: enzymatic mechanisms and cellular functions. Nat Rev Mol Cell Biol 10:721–732

    CAS  PubMed  Google Scholar 

  19. Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP (2010) Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 13:1763–1811

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    CAS  PubMed  Google Scholar 

  21. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    CAS  PubMed  Google Scholar 

  22. Liang J, Cheng SL, Hou J, Xu Z, Zhao YL (2012) Car-Parinello molecular dynamics simulations of thionitroxide and S-nitrosothiol in the gas phase, methanol, and water—a theoretical study of S-nitrosylation. Sci China Chem 55:2081–2088

    CAS  Google Scholar 

  23. Hogg N (1999) The kinetics of S-transnitrosation—a reversible second-order reaction. Anal Biochem 272:257–262

    CAS  PubMed  Google Scholar 

  24. Shi T, Chen M, Chen XP, Wang JT, Wan AJ, Zhao YL (2015) Molecular mechanism of protein S-nitrosylation and its disease correlation. Prog Chem 5:594–600

    Google Scholar 

  25. Duan S, Chen C (2007) S-nitrosylation/denitrosylation and apoptosis of immune cells. Cell Mol Immunol 4:353–358

    CAS  PubMed  Google Scholar 

  26. Lima B, Forrester MT, Hess DT, Stamler JS (2010) S-nitrosylation in cardiovascular signaling. Cric Res 106:633–646

    CAS  Google Scholar 

  27. Forrester MT, Foster MW, Stamler JS (2007) Assessment and application of the biotin switch technique for examining protein S-nitrosylation under conditions of pharmacologically induced oxidative stress. J Biol Chem 282:13977–13983

    CAS  PubMed  Google Scholar 

  28. Cao Y, Gomes SA, Rangel EB, Paulino EC, Fonseca TL, Li JL, Teixeira MB, Gouveia CHA, Bianco AC, Kapiloff MS, Balkan W, Hare JM (2015) S-nitrosoglutathione reductase–dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis. J Clin Investig 125:1679–1691

    PubMed  Google Scholar 

  29. Sengupta R, Ryter SW, Zuckerbraun BS, Tzeng E, Billiar TR, Stoyanovsky DA (2007) Thioredoxin catalyzes the denitrosation of low-molecular mass and protein S-nitrosothiols. Biochemistry 46:8472–8483

    CAS  PubMed  Google Scholar 

  30. Stoyanovsky DA, Tyurina YY, Tyurin VA, Anand D, Mandavia DN, Gius D, Ivanova J, Pitt B, Billiar TR, Kagan VE (2005) Thioredoxin and lipoic acid catalyze the denitrosation of low molecular weight and protein S-nitrosothiols. J Am Chem Soc 127:15815–15823

    CAS  PubMed  Google Scholar 

  31. Kelleher ZT, Sha Y, Foster MW, Foster WM, Forrester MT, Marshall HE (2014) Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation. J Biol Chem 289:3066–3072

    CAS  PubMed  Google Scholar 

  32. Chen YL, Liu RH, Zhang GW, Yu Q, Jia M, Zheng C, Wang YL, Xu CB, Zhang YP, Liu EQ (2015) Hypercysteinemia promotes atherosclerosis by reducing protein S-nitrosylation. Biomed Pharmacother 70:253–259

    CAS  PubMed  Google Scholar 

  33. Li J, Zhang Y, Zhang YY, Lu SL, Miao YT, Yang J, Huang SM, Ma XL, Han LL, Deng JC, Fan FF, Liu B, Huo Y, Xu QB, Chen C, Wang X, Feng J (2018) GSNOR modulates hyperhomocysteinemia-induced T cell activation and atherosclerosis by switching Akt S-nitrosylation to phosphorylation. Redox Biol 17:386–399

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jankov RP, Daniel KL, Iny S, Kantores C, Ivanovska J, Fadel NB, Jain A (2018) Sodium nitrite augments lung S-nitrosylation and reverses chronic hypoxic pulmonary hypertension in juvenile rats. Am J Physiol Lung Cell Mol Physiol 315:L742–L751

    CAS  PubMed  Google Scholar 

  35. Jiang H, Song N, Wang J, Ren LY, Xie JX (2007) Peripheral iron dextran induced degeneration of dopaminergic neurons in rat substantia nigra. Neurochem Int 51:32–36

    CAS  PubMed  Google Scholar 

  36. Roth JA, Singleton S, Feng J, Garrick M, Paradkar PN (2010) Parkin regulates metal transport via proteasomal degradation of the 1B isoforms of divalent metal transporter 1. J Neurochem 113:454–464

    CAS  PubMed  Google Scholar 

  37. Bi MX, Du XX, Jiao Q, Liu ZG, Jiang H (2020) α-Synuclein regulates iron homeostasis via preventing parkin-mediated DMT1 ubiquitylation in Parkinson’s disease models. ACS Chem Neurosci 11:1682–1691

    CAS  PubMed  Google Scholar 

  38. Liu C, Zhang CW, Lo SQ, Ang ST, Chew KCM, Yu DJ, Chai BH, Tan B, Tsang F, Tai YK, Tan BWQ, Liang MC, Tan HT, Tang JY, Lai MKP, Chua JJE, Chung MCM, Khanna S, Lim K, Soong TW (2018) S-nitrosylation of divalent metal transporter 1 enhances iron uptake to mediate loss of dopaminergic neurons and motoric deficit. J Neurosci 38:8364–8377

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Yao DD, Gu ZZ, Nakamura T, Shi ZQ, Ma YL, Gaston B, Palmer LA, Rockenstein E, Zhang ZH, Masliah E, Uehara T, Lipton SA (2004) Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci USA 101:10810–10814

    CAS  PubMed  Google Scholar 

  40. Yin L, Xie YY, Yin SY, Lv XL, Zhang J, Gu ZZ, Sun HD, Liu SQ (2015) The S-nitrosylation status of PCNA localized in cytosol impacts the apoptotic pathway in a Parkinson’s disease paradigm. PLoS One 10:e0117546

    PubMed  PubMed Central  Google Scholar 

  41. Calabrese V, Santoro A, Monti D, Crupi R, Di Paola R, Latteri S, Cuzzocrea S, Zappia M, Giordano J, Calabrese EJ, Franceschi C (2018) Aging and Parkinson’s disease: inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic Biol Med 115:80–91

    CAS  PubMed  Google Scholar 

  42. Kumar R, Jangir DK, Verma G, Shekhar S, Hanpude P, Kumar S, Kumari R, Singh N, Bhavesh NS, Jana NR, Maiti TK (2017) S-nitrosylation of UCHL1 induces its structural instability and promotes α-synuclein aggregation. Sci Rep 7:44558

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hedrich K, Djarmati A, Schafer N, Hering R, Wellenbrock C, Weiss PH, Hilker R, Vieregge P, Ozelius LJ, Heutink P, Bonifati V, Schwinger E, Lang AE, Noth J, Bressman S, Pramstaller PP, Riess O, Klein C (2004) DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 62:389–394

    CAS  PubMed  Google Scholar 

  44. Kumar R, Kumari R, Kumar S, Jangir DK, Maiti TK (2018) Extracellular α-synuclein disrupts membrane nanostructure and promotes S-nitrosylation induced neuronal cell death. Biomacromolecules 19:1118–1129

    CAS  PubMed  Google Scholar 

  45. Oh C, Sultan A, Platzer J, Dolatabadi N, Soldner F, Mcclatchy DB, Diedrich JK, Yates JR, Ambasudhan R, Nakamura T, Jaenisch R, Lipton SA (2017) S-nitrosylation of PINK1 attenuates PINK1/Parkin dependent mitophagy in hiPSC-based Parkinson’s disease models. Cell Rep 21:2171–2182

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilkaniec A, Lenkiewicz AM, Czapski GA, Jeśko H, Hilgier W, Brodzik R, Gąssowskadobrowolska M, Culmsee C, Adamczyk A (2019) Extracellular alpha-synuclein oligomers induce Parkin S-nitrosylation: relevance to sporadic Parkinson’s disease etiopathology. Mol Neurobiol 56:125–140

    CAS  PubMed  Google Scholar 

  47. Zhang ZZ, Liu L, Jiang XX, Zhai SD, Xing D (2016) The essential role of Drp1 and its regulation by S-nitrosylation of Parkin in dopaminergic neurodegeneration: implications for Parkinson’s disease. Antioxid Redox Signal 25:609–622

    CAS  PubMed  Google Scholar 

  48. Ryu I, Lee K, Do S (2016) Aβ-affected pathogenic induction of S-nitrosylation of OGT and identifification of Cys-NO linkage triplet. Biochim Biophys Acta 1864:609–621

    CAS  PubMed  Google Scholar 

  49. Masliah E (1995) Mechanisms of synaptic dysfunction in Alzheimer’s disease. Histol Histopathol 10:509–519

    CAS  PubMed  Google Scholar 

  50. Scheff SW, Price DA, Schmitt FA, Mufson EJ (2006) Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging 27:1372–1384

    CAS  PubMed  Google Scholar 

  51. Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    CAS  PubMed  Google Scholar 

  52. Nakamura T, Lipton SA (2017) ‘SNO’-storms compromise protein activity and mitochondrial metabolism in neurodegenerative disorders. Trends Endocrinol Metab 28:879–892

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bak DW, Pizzagalli MD, Weerapana E (2017) Identifying functional cysteine residues in the mitochondria. ACS Chem Biol 12:947–957

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chouchani ET, Hurd TR, Nadtochiy SM, Brookes PS, Fearnley IM, Lilley KS, Smith RA, Murphy MP (2010) Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochem J 430:49–59

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Doulias PT, Tenopoulou M, Greene JL, Raju K, Ischiropoulos H (2013) Nitric oxide regulates mitochondrial fatty acid metabolism through reversible protein S-nitrosylation. Sci Signal 6:rs1

    PubMed  PubMed Central  Google Scholar 

  56. Lee YI, Giovinazzo D, Kang HC, Lee Y, Jeong JS, Doulias PT, Xie Z, Hu J, Ghasemi M, Ischiropoulos H, Qian J, Zhu H, Blackshaw S, Dawson VL, Dawson TM (2014) Protein microarray characterization of the S-nitrosoproteome. Mol Cell Proteom 13:63–72

    CAS  Google Scholar 

  57. Piantadosi CA (2012) Regulation of mitochondrial processes by protein S-nitrosylation. Biochem Biophys Acta 1820:712–721

    CAS  PubMed  Google Scholar 

  58. Seneviratne U, Nott A, Bhat VB, Ravindra KC, Wishnok JS, Tsai LH, Tannenbaum SR (2016) S-nitrosation of proteins relevant to Alzheimer’s disease during early stages of neurodegeneration. Proc Natl Acad Sci USA 113:4152–4157

    CAS  PubMed  Google Scholar 

  59. Sun J, Morgan M, Shen RF, Steenbergen C, Murphy E (2007) Preconditioning results in S-nitrosylation of proteins involved in regulation of mitochondrial energetics and calcium transport. Circ Res 101:1155–1163

    CAS  PubMed  Google Scholar 

  60. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE (2005) Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 57:695–703

    CAS  PubMed  Google Scholar 

  61. Xu PF, Ye SY, Li KY, Huang MQ, Wang QL, Zeng SS, Chen X, Gao WW, Chen JP, Zhang QB, Zhong Z, Lin Y, Rong ZL, Xu Y, Hao BT, Peng AH, Ouyang MZ, Liu QZ (2019) NOS1 inhibits the interferon response of cancer cells by S-nitrosylation of HDAC2. J Exp Clin Cancer Res 38:1–16

    CAS  Google Scholar 

  62. Laurence Z, Lorenzo G, Oliver K, Smyth MJ, Guido K (2015) Type I interferons in anticancer immunity. Nat Rev Immunol 15:405–414

    Google Scholar 

  63. Minn AJ (2015) Interferons and the immunogenic effects of cancer therapy. Trends Immunol 36:725–737

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28:15–33

    PubMed  Google Scholar 

  65. Bukholm IRK, Nesland JM, Karesen R, Jacobsen U, Borresendale AL (1998) E-cadherin and α-, β-, and γ-catenin protein expression in relation to metastasis in human breast carcinoma. J Pathol 185:262–266

    CAS  PubMed  Google Scholar 

  66. Bajpai S, Feng YF, Krishnamurthy R, Longmore GD, Wirtz D (2009) Loss of alpha-catenin decreases the strength of single E-cadherin bonds between human cancer cells. J Biol Chem 284:18252–18259

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Yoshida R, Kimura N, Harada Y, Ohuchi N (2001) The loss of E-cadherin, α- and β-catenin expression is associated with metastasis and poor prognosis in invasive breast cancer. Int J Oncol 18:513–520

    CAS  PubMed  Google Scholar 

  68. Basudhardebashree S, Almeida DO, Kesarwalaaparna HL, Chengrobert YS, Glynnsharon A, Ambsstefan WA, Ridnourlisa A (2017) Nitric oxide synthase-2-derived nitric oxide drives multiple pathways of breast cancer progression. Antioxid Redox Signal 26:1044–1058

    CAS  Google Scholar 

  69. Switzer CH, Glynn SA, Cheng RYS, Ridnour LA, Green JE, Ambs S, Wink DA (2012) S-nitrosylation of EGFR and Src activates an oncogenic signaling network in human basal-like breast cancer. Mol Cancer Res 10:1203–1215

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhou SL, Han QL, Wang R, Li X, Wang QY, Wang HZ, Wang J, Ma YF (2016) PRDX2 protects hepatocellular carcinoma SMMC-7721 cells from oxidative stress. Oncol Lett 12:2217–2221

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Mullen L, Hanschmann EM, Lillig CH, Herzenberg LA, Ghezzi P (2015) Cysteine oxidation targets peroxiredoxins 1 and 2 for exosomal releasethrough a novel mechanism of redox-dependent secretion. Mol Med 21:98–108

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Saito S, Furuno A, Sakurai J, Park H, Shinya K, Tomida A (2012) Compound C prevents the unfolded protein response during glucose deprivation through a mechanism independent of AMPK and BMP signaling. PLoS One 7:e45845

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee CW, Wong LL, Tse EYT, Liu HF, Leong VY, Lee JM, Hardie DG, Ng IO, Ching Y (2012) AMPK promotes p53 acetylation via phosphorylation and inactivation of SIRT1 in liver cancer cells. Can Res 72:4394–4404

    CAS  Google Scholar 

  74. Zhang YH, Sun CN, Xiao GK, Shan H, Tang LY, Yi YJ, Yu WG, Gu YC (2019) S-nitrosylation of the Peroxiredoxin-2 promotes S-nitrosoglutathione-mediated lung cancer cells apoptosis via AMPK-SIRT1 pathway. Cell Death Dis 10:329

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pan LH, Lin Z, Tang X, Tian JX, Zheng Q, Jing J, Xie LP, Chen HS, Lu QL, Wang H, Li QG, Han Y, Ji Y (2020) S-nitrosylation of plastin-3 exacerbates thoracic aortic dissection formation via endothelial barrier dysfunction. Arterioscler Thromb Vasc Biol 40:175–188

    CAS  PubMed  Google Scholar 

  76. Hoffman EP, Brown RH, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51:919–928

    CAS  PubMed  Google Scholar 

  77. Connuck DM, Sleeper LA, Colan SD, Cox GF, Towbin JA, Lowe AM, Wilkinson JD, Orav EJ, Cuniberti L, Salbert BA, Lipshultz SE (2008) Characteristics and outcomes of cardiomyopathy in children with Duchenne or Becker muscular dystrophy: a comparative study from the Pediatric Cardiomyopathy Registry. Am Heart J 155:998–1005

    PubMed  PubMed Central  Google Scholar 

  78. Lillo MA, Himelman E, Shirokova N, Xie LF, Fraidenraich D, Contreras JE (2019) S-nitrosylation of connexin43 hemichannels elicits cardiac stress-induced arrhythmias in Duchenne muscular dystrophy mice. JCI Insight 4:e130091

    PubMed Central  Google Scholar 

  79. Dai Y, Wang H, Ogawa A, Yamanaka H, Obata K, Tokunaga A, Noguchi K (2005) Ca2+/calmodulin-dependent protein kinase II in the spinal cord contributes to neuropathic pain in a rat model of mononeuropathy. Eur J Neurosci 21:2467–2474

    PubMed  Google Scholar 

  80. Coultrap SJ, Buard I, Kulbe JR, Dell'Acqua ML, Bayer KU (2010) CaMKII Autonomy is substrate-dependent and further stimulated by Ca(2+)/calmodulin. J Biol Chem 285:17930–17937

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Song T, Hatano N, Kambe T, Miyamoto Y, Ihara H, Yamamoto H, Sugimoto K, Kume K, Yamaguchi F, Tokuda M, Watanabe Y (2008) Nitric oxide-mediated modulation of calcium/calmodulin-dependent protein kinase II. Biochem J 412:223–231

    CAS  PubMed  Google Scholar 

  82. Coultrap SJ, Bayer KU (2014) Nitric oxide induces Ca2+-independent activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII). J Biol Chem 289:19458–19465

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Coultrap SJ, Zaegel V, Bayer KU (2014) CaMKII isoforms differ in their specific requirements for nitric oxide regulation. FEBS Lett 588:4672–4676

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Calabrese V, Santoro A, Salinaro AT, Modafferi S, Scuto M, Albouchi F, Monti D, Giordano J, Zappia M, Franceschi C, Calabrese EJ (2018) Hormetic approaches to the treatment of Parkinson’s disease: perspectives and possibilities. J Neurosci Res 96:1641–1662

    CAS  PubMed  Google Scholar 

  85. Pilipenko V, Narbute K, Amara I, Trovato A, Scuto M, Pupure J, Jansone B, Poikans J, Bisenieks E, Klusa V, Calabrese V (2019) GABA-containing compound gammapyrone protects against brain impairments in Alzheimer’s disease model male rats and prevents mitochondrial dysfunction in cell culture. J Neurosci Res 97:708–726

    CAS  PubMed  Google Scholar 

  86. Peters V, Calabrese V, Forsberg E, Volk N, Fleming T, Baelde H, Weigand T, Thiel C, Trovato A, Scuto M, Modafferi S, Schmitt CP (2018) Protective actions of anserine under diabetic conditions. Int J Mol Sci 19:2751

    PubMed Central  Google Scholar 

  87. Singh AP, Singh R, Verma SS, Rai V, Kaschula CH, Maiti P, Gupta SC (2019) Health benefits of resveratrol: evidence from clinical studies. Med Res Rev 39:1851–1891

    CAS  Google Scholar 

  88. Di Rosa G, Brunetti G, Scuto M, Salinaro AT, Calabrese EJ, Crea R, Schmitz-Linneweber C, Calabrese V, Saul N (2020) Healthspan enhancement by olive polyphenols in C. elegans wild type and Parkinson’s models. Int J Mol Sci 21:3893

    PubMed Central  Google Scholar 

  89. Brunetti G, Di Rosa G, Scuto M, Leri M, Stefani M, Schmitz-Linneweber C, Calabrese V, Saul N (2020) Healthspan maintenance and prevention of Parkinson’s-like phenotypes with hydroxytyrosol and oleuropein aglycone in C. elegans. Int J Mol Sci 21:2588

    CAS  PubMed Central  Google Scholar 

  90. Leri M, Scuto M, Ontario ML, Calabrese V, Calabrese EJ, Bucciantini M, Stefani M (2020) Healthy effects of plant polyphenols: molecular mechanisms. Int J Mol Sci 21:1250

    CAS  PubMed Central  Google Scholar 

  91. Neurauter G, Schrocksnadel K, Scholl-Burgi S, Sperner-Unterweger B, Schubert C, Ledochowski M, Fuchs D (2008) Chronic immune stimulation correlates with reduced phenylalanine turnover. Curr Drug Metab 9:622–627

    CAS  PubMed  Google Scholar 

  92. Miquel S, Champ C, Day J, Aarts E, Bahr BA, Bakker M, Bánáti D, Calabrese V, Cederholm T, Cryan J, Dye L, Farrimon JA, Korosi A, Layé S, Maudsley S, Milenkovic D, Mohajeri MH, Sijben J, Solomon A, Spencer JPE, Thuret S, Berghe WV, Vauzour D, Vellas B, Wesnes K, Willatts P, Wittenberg R, Geurts L (2017) Poor cognitive ageing: vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Res Rev 42:40–55

    PubMed  Google Scholar 

  93. Stebbing ARD (1982) Hormesis—the stimulation of growth by low-levels of inhibitors. Sci Total Environ 22:213–234

    CAS  PubMed  Google Scholar 

  94. Navarro A, Boveris A (2008) Mitochondrial nitric oxide synthase, mitochondrial brain dysfunction in aging, and mitochondria-targeted antioxidants. Adv Drug Deliv Rev 60:1534–1544

    CAS  PubMed  Google Scholar 

  95. Calabrese EJ, Calabrese V, Tsatsakis A, Giordano JJ (2020) Hormesis and Ginkgo biloba (GB): numerous biological effects of GB are mediated via hormesis. Ageing Res Rev 10:101019

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of National Natural Science Foundation of China (31701531), Hebei Natural Science Foundation (C2018201146), and One Province One School Project of China.

Author information

Authors and Affiliations

Authors

Contributions

Writing—original draft preparation, YZ and YD; writing—review and editing, YL, HX and XY; supervision, YL. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yumiao Lang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Deng, Y., Yang, X. et al. The Relationship Between Protein S-Nitrosylation and Human Diseases: A Review. Neurochem Res 45, 2815–2827 (2020). https://doi.org/10.1007/s11064-020-03136-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03136-6

Keywords

Navigation