Skip to main content

Advertisement

Log in

Apoptotic Pathways and Alzheimer’s Disease: Probing Therapeutic Potential

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Apoptosis is an intrinsic biochemical, cellular process that regulates cell death and is crucial for cell survival, cellular homeostasis, and maintaining the optimum functional status. Apoptosis in a predetermined and programmed manner regulates several molecular events, including cell turnover, embryonic development, and immune system functions but may be the exclusive contributor to several disorders, including neurodegenerative manifestations, when it functions in an aberrant and disorganized manner. Alzheimer’s disease (AD) is a fatal, chronic neurodegenerative disorder where apoptosis has a compelling and divergent role. The well-characterized pathological features of AD, including extracellular plaques of amyloid-beta, intracellular hyperphosphorylated tangles of tau protein (NFTs), inflammation, mitochondrial dysfunction, oxidative stress, and excitotoxic cell death, also instigate an abnormal apoptotic cascade in susceptible brain regions (cerebral cortex, hippocampus). The apoptotic players in these regions affect cellular organelles (mitochondria and endoplasmic reticulum), interact with trophic factors, and several pathways, including PI3K/AKT, JNK, MAPK, mTOR signalling. This dysregulated apoptotic cascade end with an abnormal neuronal loss which is a primary event that may precede the other events of AD progression and correlates well with the degree of dementia. The present review provides insight into the diverse and versatile apoptotic mechanisms that are indispensable for neuronal survival and constitute an integral part of the pathological progression of AD. Identification of potential targets (restoring apoptotic and antiapoptotic balance, caspases, TRADD, RIPK1, FADD, TNFα, etc.) may be valuable and advantageous to decide the fate of neurons and to develop potential therapeutics for treatment of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AIF:

Apoptosis-Inducing Factor

AMPK:

AMP-Activated Protein Kinase

Apaf1:

Apoptotic Protease Activating Factor 1

APP:

βAmyloid Precursor Protein

ATF-6:

Activating Transcription Factor-6

BAX:

Bcl-2 Associated X Protein

CREB:

cAMP Response Element-Binding Protein

ERK:

Extracellular Signalregulated Protein Kinase

FADD:

Fas Associated Death Domain

FKH/FOXO:

factor Forkhead/Forkhead Box Transcription Factors

GSK3B:

Glycogen Synthase Kinase 3β

IFN-γ:

Interferon-Gamma

IRE1:

Inositol-Requiring Enzyme-1

JAK:

Janus Kinase

JNK:

c-Jun N-Terminal Kinase

MAPK:

A Mitogen-Activated Protein Kinase

mTOR:

Mammalian Target of Rapamycin

NFKB:

Nuclear Factor Kappa B

PARP1:

Poly (ADP-Ribose) Polymerase

PERK:

Pancreatic ER Kinase

PI3K:

Phosphatidylinositol-3-Kinase

RIP:

Receptor Interacting Protein

STAT:

Signal Transducer and Activator of Transcription

TACE:

TNF-α Converting Enzyme

TAT–TIJIP:

Tat Cell Transporter Sequence–Truncated Inhibitor of JNK Interacting Protein

TNF-α:

Tumor Necrosis Factor Alpha

TRADD:

TNF Receptor Associated Death Domain

TSC1:

Tuberous Sclerosis Protein 1

WNT:

Wingless-Related Integration

References

  1. Bhute S, Sarmah D, Datta A, Rane P, Shard A, Goswami A, Borah A, Kalia K, Dave KR, Bhattacharya P (2020) Molecular pathogenesis and interventional strategies for Alzheimer’s disease: promises and pitfalls. ACS Pharmacol Transl Sci 3(3):472–488. https://doi.org/10.1021/acsptsci.9b00104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sharma VK, Mehta V, Singh TG (2020) Alzheimer’s disorder: epigenetic connection and associated risk factors. Curr Neuropharmacol 18(8):740–753. https://doi.org/10.2174/1570159X18666200128125641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sharma VK, Singh TG (2020) Navigating Alzheimer’s disease via chronic stress: the role of glucocorticoids. Curr Drug Targets 21(5):433–444. https://doi.org/10.2174/1389450120666191017114735

    Article  CAS  PubMed  Google Scholar 

  4. Su JH, Anderson AJ, Cummings BJ, Cotman CW (1994) Immunohistochemical evidence for apoptosis in Alzheimer’s disease. Neuroreport 5(18):2529–2533. https://doi.org/10.1097/00001756-199412000-00031

    Article  CAS  PubMed  Google Scholar 

  5. Sharma VK, Singh TG, Mehta V (2021) Stressed mitochondria: a target to intrude Alzheimer’s disease. Mitochondrion 59:48–57. https://doi.org/10.1016/j.mito.2021.04.004

    Article  CAS  PubMed  Google Scholar 

  6. Felderhoff-Mueser U, Sifringer M, Pesditschek S, Kuckuck H, Moysich A, Bittigau P, Ikonomidou C (2002) Pathways leading to apoptotic neurodegeneration following trauma to the developing rat brain. Neurobiol Dis 11(2):231–245. https://doi.org/10.1006/nbdi.2002.0521

    Article  CAS  PubMed  Google Scholar 

  7. Nisticò R, Borg JJ (2021) Aducanumab for Alzheimer’s disease: a regulatory perspective. Pharmacol Res 171:105754

    Article  Google Scholar 

  8. Shimohama S (2000) Apoptosis in Alzheimer’s disease–an update. Apoptosis 5(1):9–16. https://doi.org/10.1023/a:1009625323388

    Article  CAS  PubMed  Google Scholar 

  9. Sharma VK, Singh TG, Singh S (2020) Cyclic nucleotides signaling and phosphodiesterase inhibition: defying Alzheimer’s disease. Curr Drug Targets 21(13):1371–1384. https://doi.org/10.2174/1389450121666200727104728

    Article  CAS  PubMed  Google Scholar 

  10. Sharma VK, Singh TG, Garg N, Dhiman S, Gupta S, Rahman MH, Najda A, Walasek-Janusz M, Kamel M, Albadrani GM, Akhtar MF, Saleem A, Altyar AE, Abdel-Daim MM (2021) Dysbiosis and Alzheimer’s disease: a role for chronic stress? Biomolecules 11(5):678. https://doi.org/10.3390/biom11050678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Long JY, Chen JM, Liao YJ, Zhou YJ, Liang BY, Zhou Y (2020) Naringin provides neuroprotection in CCL2-induced cognition impairment by attenuating neuronal apoptosis in the hippocampus. Behav Brain Funct 16(1):4. https://doi.org/10.1186/s12993-020-00166-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Obulesu M, Lakshmi MJ (2014) Apoptosis in Alzheimer’s disease: an understanding of the physiology, pathology and therapeutic avenues. Neurochem Res 39(12):2301–2312. https://doi.org/10.1007/s11064-014-1454-4

    Article  CAS  PubMed  Google Scholar 

  13. Turunc Bayrakdar E, Uyanikgil Y, Kanit L, Koylu E, Yalcin A (2014) Nicotinamide treatment reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Aβ(1–42)-induced rat model of Alzheimer’s disease. Free Radic Res 48(2):146–158. https://doi.org/10.3109/10715762.2013.857018

    Article  CAS  PubMed  Google Scholar 

  14. Gómez-Isla T, Price JL, McKeel DW Jr., Morris JC, Growdon JH, Hyman BT (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16(14):4491–4500. https://doi.org/10.1523/JNEUROSCI.16-14-04491.1996

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cotman CW (1998) Apoptosis decision cascades and neuronal degeneration in Alzheimer’s disease. Neurobiol Aging 19(1 Suppl):S29–S32. https://doi.org/10.1016/s0197-4580(98)00042-6

    Article  CAS  PubMed  Google Scholar 

  16. Martínez-Pinilla E, Ordóñez C, Del Valle E, Navarro A, Tolivia J (2016) Regional and gender study of neuronal density in brain during aging and in Alzheimer’s disease. Front Aging Neurosci 8:213. https://doi.org/10.3389/fnagi.2016.00213

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang YL, Li JF, Wang YT, Xu CY, Hua LL, Yang XP, Geng S, Wang SS, Wang Z, Yin HL (2017) Curcumin reduces hippocampal neuron apoptosis and JNK-3 phosphorylation in rats with Aβ-induced Alzheimer’s disease: protecting spatial learning and memory. J Neurorestoratol 5:117–123

    Article  CAS  Google Scholar 

  18. LeBlanc AC (2005) The role of apoptotic pathways in Alzheimer’s disease neurodegeneration and cell death. Curr Alzheimer Res 2(4):389–402. https://doi.org/10.2174/156720505774330573

    Article  CAS  PubMed  Google Scholar 

  19. Tang D, Kang R, Berghe TV et al (2019) The molecular machinery of regulated cell death. Cell Res 29:347–364

    Article  CAS  Google Scholar 

  20. O’Brien MA, Kirby R (2008) Apoptosis: a review of pro-apoptotic and anti‐apoptotic pathways and dysregulation in disease. J Vet Emerg Crit Care 18(6):572–585

    Article  Google Scholar 

  21. Jellinger KA (2001) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5(1):1–17. https://doi.org/10.1111/j.1582-4934.2001.tb00134.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cotman CW, Anderson AJ (1995) A potential role for apoptosis in neurodegeneration and Alzheimer’s disease. Mol Neurobiol 10(1):19–45. https://doi.org/10.1007/BF02740836

    Article  CAS  PubMed  Google Scholar 

  23. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284(5756):555–556. https://doi.org/10.1038/284555a0

    Article  CAS  PubMed  Google Scholar 

  24. Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89(2):175–184. https://doi.org/10.1016/s0092-8674(00)80197-x

    Article  CAS  PubMed  Google Scholar 

  25. Crowley LC, Marfell BJ, Waterhouse NJ (2016) Detection of DNA fragmentation in apoptotic cells by TUNEL. Cold Spring Harb Protoc. https://doi.org/10.1101/pdb.prot087221

    Article  PubMed  Google Scholar 

  26. Satija S, Kaur H, Tambuwala MM, Sharma P, Vyas M, Khurana N, Sharma N, Bakshi HA, Charbe NB, Zacconi FC, Aljabali AA, Nammi S, Dureja H, Singh TG, Gupta G, Dhanjal DS, Dua K, Chellappan DK, Mehta M (2021) Hypoxia-inducible factor (HIF): fuel for cancer progression. Curr Mol Pharmacol. https://doi.org/10.2174/1874467214666210120154929

    Article  PubMed  Google Scholar 

  27. Wu CK, Thal L, Pizzo D, Hansen L, Masliah E, Geula C (2005) Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer’s disease. Exp Neurol 195(2):484–496. https://doi.org/10.1016/j.expneurol.2005.06.020

    Article  CAS  PubMed  Google Scholar 

  28. Wang X (2009) The antiapoptotic activity of melatonin in neurodegenerative diseases. CNS Neurosci Ther 15(4):345–357. https://doi.org/10.1111/j.1755-5949.2009.00105.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ramalho RM, Viana RJ, Low WC, Steer CJ, Rodrigues CM (2008) Bile acids and apoptosis modulation: an emerging role in experimental Alzheimer’s disease. Trends Mol Med 14(2):54–62. https://doi.org/10.1016/j.molmed.2007.12.001

    Article  CAS  PubMed  Google Scholar 

  30. Roth KA (2001) Caspases, apoptosis, and Alzheimer disease: causation, correlation, and confusion. J Neuropathol Exp Neurol 60(9):829–838. https://doi.org/10.1093/jnen/60.9.829

    Article  CAS  PubMed  Google Scholar 

  31. Cheng M, Tang Z, Liang D, Zeng F, Liu R, Lian Q, Wu H (2020) The effects of Porphyromonas gingivalis on the apoptosis of hippocampal cells in Sprague-Dawley rats and its underlying mechanisms. Int J Clin Exp Med 13(1):300–309

    CAS  Google Scholar 

  32. Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, Woodbury P, Growdon J, Cotman CW, Pfeiffer E, Schneider LS (1997) A. controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. New Eng J Med 336(17):1216–1222

    Article  CAS  Google Scholar 

  33. Fontaine RH, Cases O, Lelièvre V, Mesplès B, Renauld JC, Loron G, Degos V, Dournaud P, Baud O, Gressens P (2008) IL-9/IL-9 receptor signaling selectively protects cortical neurons against developmental apoptosis. Cell Death Differ 15(10):1542–1552. https://doi.org/10.1038/cdd.2008.79

    Article  CAS  PubMed  Google Scholar 

  34. Hu X, Song C, Fang M, Li C (2018) Simvastatin inhibits the apoptosis of hippocampal cells in a mouse model of Alzheimer’s disease. Exp Ther Med 15(2):1795–1802. https://doi.org/10.3892/etm.2017.5620

    Article  CAS  PubMed  Google Scholar 

  35. Oceandy D, Amanda B, Ashari FY, Faizah Z, Azis MA, Stafford N (2019) The cross-talk between the TNF-α and RASSF-hippo signalling pathways. Int J Mol Sci 20(9):2346. https://doi.org/10.3390/ijms20092346

    Article  CAS  PubMed Central  Google Scholar 

  36. Busca A, Saxena M, Kryworuchko M, Kumar A (2009) Anti-apoptotic genes in the survival of monocytic cells during infection. Curr Genom 10(5):306–317. https://doi.org/10.2174/138920209788920967

    Article  CAS  Google Scholar 

  37. Fulda S (2009) Tumor resistance to apoptosis. Int J Cancer 124(3):511–515. https://doi.org/10.1002/ijc.24064

    Article  CAS  PubMed  Google Scholar 

  38. Ziegler DS, Kung AL, Kieran MW (2008) Anti-apoptosis mechanisms in malignant gliomas. J Clin Oncol 26(3):493–500. https://doi.org/10.1200/JCO.2007.13.9717

    Article  CAS  PubMed  Google Scholar 

  39. Chen L, Xu B, Liu L, Luo Y, Yin J, Zhou H, Chen W, Shen T, Han X, Huang S (2010) Hydrogen peroxide inhibits mTOR signaling by activation of AMPKalpha leading to apoptosis of neuronal cells. Lab Invest 90(5):762–773. https://doi.org/10.1038/labinvest.2010.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pias EK, Aw TY (2002) Early redox imbalance mediates hydroperoxide-induced apoptosis in mitotic competent undifferentiated PC-12 cells. Cell Death Differ 9(9):1007–16. https://doi.org/10.1038/sj.cdd.4401064

    Article  CAS  PubMed  Google Scholar 

  41. Okouchi M, Ekshyyan O, Maracine M, Aw TY (2007) Neuronal apoptosis in neurodegeneration. Antioxid Redox Signal 9(8):1059–1096. https://doi.org/10.1089/ars.2007.1511

    Article  CAS  PubMed  Google Scholar 

  42. Grewal AK, Singh TG, Sharma D, Sharma V, Singh M, Rahman MH, Najda A, Walasek-Janusz M, Kamel M, Albadrani GM, Akhtar MF, Saleem A, Abdel-Daim MM (2021) Mechanistic insights and perspectives involved in neuroprotective action of quercetin. Biomed Pharmacother 140:111729. https://doi.org/10.1016/j.biopha.2021.111729

    Article  CAS  PubMed  Google Scholar 

  43. Mattson MP, Culmsee C, Yu ZF (2000) Apoptotic and antiapoptotic mechanisms in stroke. Cell Tissue Res 301(1):173–187. https://doi.org/10.1007/s004419900154

    Article  CAS  PubMed  Google Scholar 

  44. Tubeleviciute-Aydin A, Zhou L, Sharma G, Soni IV, Savinov SN, Hardy JA, LeBlanc AC (2018) Rare human caspase-6-R65W and caspase-6-G66R variants identify a novel regulatory region of caspase-6 activity. Sci Rep 8(1):4428. https://doi.org/10.1038/s41598-018-22283-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo H, Pétrin D, Zhang Y, Bergeron C, Goodyer CG, LeBlanc AC (2006) Caspase-1 activation of caspase-6 in human apoptotic neurons. Cell Death Differ 13(2):285–292. https://doi.org/10.1038/sj.cdd.4401753

    Article  CAS  PubMed  Google Scholar 

  46. Simon DJ, Weimer RM, McLaughlin T, Kallop D, Stanger K, Yang J, O’Leary DD, Hannoush RN, Tessier-Lavigne M (2012) A caspase cascade regulating developmental axon degeneration. J Neurosci 32(49):17540–17553. https://doi.org/10.1523/JNEUROSCI.3012-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Angel A, Volkman R, Royal TG, Offen D (2020) Caspase-6 knockout in the 5xFAD model of Alzheimer’s disease reveals favorable outcome on memory and neurological hallmarks. Int J Mol Sci 21(3):1144. https://doi.org/10.3390/ijms21031144

    Article  CAS  PubMed Central  Google Scholar 

  48. Tible M, Mouton Liger F, Schmitt J, Giralt A, Farid K, Thomasseau S, Gourmaud S, Paquet C, Rondi Reig L, Meurs E, Girault JA, Hugon J (2019) PKR knockout in the 5xFAD model of Alzheimer’s disease reveals beneficial effects on spatial memory and brain lesions. Aging Cell 18(3):e12887. https://doi.org/10.1111/acel.12887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sclip A, Arnaboldi A, Colombo I, Veglianese P, Colombo L, Messa M, Mancini S, Cimini S, Morelli F, Antoniou X, Welker E, Salmona M, Borsello T (2013) Soluble Aβ oligomer-induced synaptopathy: c-Jun N-terminal kinase’s role. J Mol Cell Biol 5(4):277–279. https://doi.org/10.1093/jmcb/mjt015

    Article  CAS  PubMed  Google Scholar 

  50. Yoon SO, Park DJ, Ryu JC, Ozer HG, Tep C, Shin YJ, Lim TH, Pastorino L, Kunwar AJ, Walton JC, Nagahara AH, Lu KP, Nelson RJ, Tuszynski MH, Huang K (2012) JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron 75(5):824–837. https://doi.org/10.1016/j.neuron.2012.06.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yao M, Nguyen TV, Pike CJ (2005) Beta-amyloid-induced neuronal apoptosis involves c-Jun N-terminal kinase-dependent downregulation of Bcl-w. J Neurosci 25(5):1149–1158. https://doi.org/10.1523/JNEUROSCI.4736-04.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang SC, Lathia JD, Selvaraj PK, Jo DG, Mughal MR, Cheng A, Siler DA, Markesbery WR, Arumugam TV, Mattson MP (2008) Toll-like receptor-4 mediates neuronal apoptosis induced by amyloid beta-peptide and the membrane lipid peroxidation product 4-hydroxynonenal. Exp Neurol 213(1):114–121. https://doi.org/10.1016/j.expneurol.2008.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yarza R, Vela S, Solas M, Ramirez MJ (2016) c-Jun N-terminal kinase (JNK) signaling as a therapeutic target for Alzheimer’s disease. Front Pharmacol 6:321. https://doi.org/10.3389/fphar.2015.00321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cui J, Zhang M, Zhang YQ, Xu ZH (2007) JNK pathway: diseases and therapeutic potential. Acta Pharmacol Sin 5:601–608. https://doi.org/10.1111/j.1745-7254.2007.00579.x

    Article  CAS  Google Scholar 

  55. Lutz C, Nimpf J, Jenny M, Boecklinger K, Enzinger C, Utermann G, Baier-Bitterlich G, Baier G (2002) Evidence of functional modulation of the MEKK/JNK/cJun signaling cascade by the low density lipoprotein receptor-related protein (LRP). J Biol Chem 277(45):43143–43151. https://doi.org/10.1074/jbc.M204426200

    Article  CAS  PubMed  Google Scholar 

  56. Dhanasekaran DN, Reddy EP (2008) JNK signaling in apoptosis. Oncogene 27(48):6245–6251. https://doi.org/10.1038/onc.2008.301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lu Z, Xu S (2006) ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life Nov 58(11):621–631. https://doi.org/10.1080/15216540600957438

    Article  CAS  Google Scholar 

  58. Subramaniam S, Zirrgiebel U, von B Und Halbach, Strelau O, Laliberté J, Kaplan C, Unsicker DR K (2004) ERK activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3. J Cell Biol 165(3):357–369. https://doi.org/10.1083/jcb.200403028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gupta A, Shah K, Oza MJ, Behl T (2019) Reactivation of p53 gene by MDM2 inhibitors: a novel therapy for cancer treatment. Biomed Pharmacother 109:484–492. https://doi.org/10.1016/j.biopha.2018.10.155

    Article  CAS  PubMed  Google Scholar 

  60. Sharma VK, Singh TG (2020) Chronic stress and diabetes mellitus: interwoven pathologies. Curr Diabetes Rev 16(6):546–556. https://doi.org/10.2174/1573399815666191111152248

    Article  CAS  PubMed  Google Scholar 

  61. Levenga J, Wong H, Milstead RA, Keller BN, LaPlante LE, Hoeffer CA (2017) AKT isoforms have distinct hippocampal expression and roles in synaptic plasticity. Elife 6:e30640. https://doi.org/10.7554/eLife.30640

    Article  PubMed  PubMed Central  Google Scholar 

  62. Noguchi M, Suizu F (2012) Regulation of AKT by phosphorylation of distinct threonine and serine residues. Adv Med Biol 47:139–162

    Google Scholar 

  63. Sharma VK, Singh TG (2020) Insulin resistance and bioenergetic manifestations: targets and approaches in Alzheimer’s disease. Life Sci 262:118401. https://doi.org/10.1016/j.lfs.2020.118401

    Article  CAS  PubMed  Google Scholar 

  64. Kim R (2005) Unknotting the roles of Bcl-2 and Bcl-xL in cell death. Biochem Biophys Res Commun 333(2):336–343. https://doi.org/10.1016/j.bbrc.2005.04.161

    Article  CAS  PubMed  Google Scholar 

  65. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96(6):857–868. https://doi.org/10.1016/s0092-8674(00)80595-4

    Article  CAS  PubMed  Google Scholar 

  66. Alberghina L, Colangelo AM (2006) The modular systems biology approach to investigate the control of apoptosis in Alzheimer’s disease neurodegeneration. BMC Neurosci 7(Suppl 1):S2. https://doi.org/10.1186/1471-2202-7-S1-S2. Suppl 1 ) .

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sharma V, Kaur A, Singh TG (2020) Counteracting role of nuclear factor erythroid 2-related factor 2 pathway in Alzheimer’s disease. Biomed Pharmacother 129:110373. https://doi.org/10.1016/j.biopha.2020.110373

    Article  CAS  PubMed  Google Scholar 

  68. Bhaskar K, Miller M, Chludzinski A, Herrup K, Zagorski M, Lamb BT (2009) The PI3K-Akt-mTOR pathway regulates Abeta oligomer induced neuronal cell cycle events. Mol Neurodegener 4:14. https://doi.org/10.1186/1750-1326-4-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Khan H, Singh A, Thapa K, Garg N, Grewal AK, Singh TG (2021) Therapeutic modulation of the phosphatidylinositol 3-kinases (PI3K) pathway in cerebral ischemic injury. Brain Res 2:147399. https://doi.org/10.1016/j.brainres.2021.147399

    Article  CAS  Google Scholar 

  70. Tramutola A, Triplett JC, Di Domenico F, Niedowicz DM, Murphy MP, Coccia R, Perluigi M, Butterfield DA (2015) Alteration of mTOR signaling occurs early in the progression of Alzheimer disease (AD): analysis of brain from subjects with pre-clinical AD, amnestic mild cognitive impairment and late-stage AD. J Neurochem 133(5):739–749. https://doi.org/10.1111/jnc.13037

    Article  CAS  PubMed  Google Scholar 

  71. Slee EA, Adrain C, Martin SJ (1999) Serial killers: ordering caspase activation events in apoptosis. Cell Death Differ 11:1067–1074. https://doi.org/10.1038/sj.cdd.4400601

    Article  CAS  Google Scholar 

  72. Diez H, Garrido JJ, Wandosell F (2012) Specific roles of Akt iso forms in apoptosis and axon growth regulation in neurons. PLoS One 7(4):e32715. https://doi.org/10.1371/journal.pone.0032715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. O’ Neill C (2013) PI3-kinase/Akt/mTOR signaling: impaired on/off switches in aging, cognitive decline and Alzheimer’s disease. Exp Gerontol 48(7):647–653

    Article  Google Scholar 

  74. Kim DI, Lee KH, Gabr AA, Choi GE, Kim JS, Ko SH, Han HJ (2016) Aβ-Induced Drp1 phosphorylation through Akt activation promotes excessive mitochondrial fission leading to neuronal apoptosis. Biochim Biophys Acta 1863(11):2820–2834. https://doi.org/10.1016/j.bbamcr.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  75. Hetman M, Xia Z (2000) Signaling pathways mediating anti-apoptotic action of neurotrophins. Acta Neurobiol Exp (Wars) 60(4):531–545

    CAS  Google Scholar 

  76. Grewal SS, York RD, Stork PJ (1999) Extracellular-signal-regulated kinase signalling in neurons. Curr Opin Neurobiol 9(5):544–553 (10.1016/S0959-4388(99)00010 – 0)

    Article  CAS  Google Scholar 

  77. Franke TF, Kaplan DR, Cantley LC (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88(4):435–437. https://doi.org/10.1016/s0092-8674(00)81883-8

    Article  CAS  PubMed  Google Scholar 

  78. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270(5240):1326–1331. https://doi.org/10.1126/science.270.5240.1326

    Article  CAS  PubMed  Google Scholar 

  79. Yao R, Cooper GM (1995) Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267(5206):2003–2006. https://doi.org/10.1126/science.7701324

    Article  CAS  PubMed  Google Scholar 

  80. Patterson SL, Abel T, Deuel TA, Martin KC, Rose JC, Kandel ER (1996) Recombinant BDNF rescues deficits in basal synaptic transmission and hippocampal LTP in BDNF knockout mice. Neuron 16(6):1137–1145. https://doi.org/10.1016/s0896-6273(00)80140-3

    Article  CAS  PubMed  Google Scholar 

  81. Yamaguchi A, Tamatani M, Matsuzaki H, Namikawa K, Kiyama H, Vitek MP, Mitsuda N, Tohyama M (2001) Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J Biol Chem 276(7):5256–5264. https://doi.org/10.1074/jbc.M008552200

    Article  CAS  PubMed  Google Scholar 

  82. Friedman WJ (2000) Neurotrophins induce death of hippocampal neurons via the p75 receptor. J Neurosci 20(17):6340–6346. https://doi.org/10.1523/JNEUROSCI.20-17-06340.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gilman CP, Mattson MP (2002) Do apoptotic mechanisms regulate synaptic plasticity and growth-cone motility? Neuromolecular Med 2(2):197–214. https://doi.org/10.1385/NMM:2:2:197

    Article  CAS  PubMed  Google Scholar 

  84. Maiese K, Chong ZZ, Wang S, Shang YC (2012) Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci 13(11):13830–13866. https://doi.org/10.3390/ijms131113830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen L, Xu B, Liu L, Luo Y, Yin J, Zhou H, Chen W, Shen T, Han X, Huang S (2010) Hydrogen peroxide inhibits mTOR signaling by activation of AMPK alpha leading to apoptosis of neuronal cells. Lab Invest 90(5):762–773. https://doi.org/10.1038/labinvest.2010.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2(98):ra75. https://doi.org/10.1126/scisignal.2000559

    Article  PubMed  PubMed Central  Google Scholar 

  87. Maiese K (2014) Driving neural regeneration through the mammalian target of rapamycin. Neural Regen Res 9(15):1413–1417. https://doi.org/10.4103/1673-5374.139453

    Article  PubMed  PubMed Central  Google Scholar 

  88. Shang YC, Chong ZZ, Wang S, Maiese K (2013) Tuberous sclerosis protein 2 (TSC2) modulates CCN4 cytoprotection during apoptotic amyloid toxicity in microglia. Curr Neurovasc Res 10(1):29–38. https://doi.org/10.2174/156720213804806007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E, Carr SA, Sabatini DM (2007) PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 25(6):903–915. https://doi.org/10.1016/j.molcel.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  90. Sharma T, Kaur D, Grewal AK, Singh TG (2021) Therapies modulating insulin resistance in Parkinson’s disease: a cross talk. Neurosci Lett 749:135754. https://doi.org/10.1016/j.neulet.2021.135754

    Article  CAS  PubMed  Google Scholar 

  91. Huang J, Manning BD (2008) The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412(2):179–190. https://doi.org/10.1042/BJ20080281

    Article  CAS  PubMed  Google Scholar 

  92. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, Yang Q, Bennett C, Harada Y, Stankunas K, Wang CY, He X, MacDougald OA, You M, Williams BO, Guan KL (2006) TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126(5):955–968. https://doi.org/10.1016/j.cell.2006.06.055

    Article  CAS  PubMed  Google Scholar 

  93. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590. https://doi.org/10.1016/s0092-8674(03)00929-2

    Article  CAS  Google Scholar 

  94. Hardie DG (2007) AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8(10):774–785. https://doi.org/10.1038/nrm2249

    Article  CAS  PubMed  Google Scholar 

  95. Kimura R, Okouchi M, Fujioka H, Ichiyanagi A, Ryuge F, Mizuno T, Imaeda K, Okayama N, Kamiya Y, Asai K, Joh T (2009) Glucagon-like peptide-1 (GLP-1) protects against methylglyoxal-induced PC12 cell apoptosis through the PI3K/Akt/mTOR/GCLc/redox signaling pathway. Neuroscience 162(4):1212–1219. https://doi.org/10.1016/j.neuroscience.2009.05.025

    Article  CAS  PubMed  Google Scholar 

  96. Lee DF, Kuo HP, Chen CT, Hsu JM, Chou CK, Wei Y, Sun HL, Li LY, Ping B, Huang WC, He X, Hung JY, Lai CC, Ding Q, Su JL, Yang JY, Sahin AA, Hortobagyi GN, Tsai FJ, Tsai CH, Hung MC (2007) IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130(3):440–455. https://doi.org/10.1016/j.cell.2007.05.058

    Article  CAS  PubMed  Google Scholar 

  97. Jones RG, Plas DR, Kubek S, Buzzai M, Mu J, Xu Y, Birnbaum MJ, Thompson CB (2005) AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol Cell 18(3):283–293. https://doi.org/10.1016/j.molcel.2005.03.027

    Article  CAS  PubMed  Google Scholar 

  98. Hung CM, Garcia-Haro L, Sparks CA, Guertin DA (2012) mTOR-dependent cell survival mechanisms. Cold Spring Harb Perspect Biol 4(12):a008771. https://doi.org/10.1101/cshperspect.a008771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yates SC, Zafar A, Hubbard P, Nagy S, Durant S, Bicknell R, Wilcock G, Christie S, Esiri MM, Smith AD, Nagy Z (2013) Dysfunction of the mTOR pathway is a risk factor for Alzheimer’s disease. Acta Neuropathol Commun 1:3. https://doi.org/10.1186/2051-5960-1-3

    Article  PubMed  PubMed Central  Google Scholar 

  100. Nicolas CS, Amici M, Bortolotto ZA, Doherty A, Csaba Z, Fafouri A, Dournaud P, Gressens P, Collingridge GL, Peineau S (2013) The role of JAK-STAT signaling within the CNS. JAKSTAT 2(1):e22925. https://doi.org/10.4161/jkst.22925

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mäkelä J, Koivuniemi R, Korhonen L, Lindholm D (2010) Interferon-gamma produced by microglia and the neuropeptide PACAP have opposite effects on the viability of neural progenitor cells. PLoS One 5(6):e11091

    Article  Google Scholar 

  102. Sharma VK, Singh TG (2020) CREB: a multifaceted target for Alzheimer’s disease. Curr Alzheimer Res 17(14):1280–1293. https://doi.org/10.2174/1567205018666210218152253

    Article  CAS  PubMed  Google Scholar 

  103. Pugazhenthi S, Wang M, Pham S, Sze CI, Eckman CB (2011) Downregulation of CREB expression in Alzheimer’s brain and in Aβ-treated rat hippocampal neurons. Mol Neurodegener 6:60. https://doi.org/10.1186/1750-1326-6-60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Che H, Zhang L, Ding L, Xie W, Jiang X, Xue C, Zhang T, Wang Y (2020) EPA-enriched ethanolamine plasmalogen and EPA-enriched phosphatidylethanolamine enhance BDNF/TrkB/CREB signaling and inhibit neuronal apoptosis in vitro and in vivo. Food Funct 11(2):1729–1739. https://doi.org/10.1039/c9fo02323b

    Article  CAS  PubMed  Google Scholar 

  105. Pugazhenthi S, Nesterova A, Jambal P, Audesirk G, Kern M, Cabell L, Eves E, Rosner MR, Boxer LM, Reusch JE (2003) Oxidative stress-mediated down-regulation of bcl-2 promoter in hippocampal neurons. J Neurochem 84(5):982–996. https://doi.org/10.1046/j.1471-4159.2003.01606.x

    Article  CAS  PubMed  Google Scholar 

  106. Sedger LM, McDermott MF (2014) TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants—past, present and future. Cytokine Growth Factor Rev 25(4):453–472. https://doi.org/10.1016/j.cytogfr.2014.07.016

    Article  CAS  PubMed  Google Scholar 

  107. Kalliolias GD, Ivashkiv LB (2016) TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 12(1):49–62. https://doi.org/10.1038/nrrheum.2015.169

    Article  CAS  PubMed  Google Scholar 

  108. Brenner D, Blaser H, Mak TW (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15(6):362–374. https://doi.org/10.1038/nri3834

    Article  CAS  PubMed  Google Scholar 

  109. Xu X, Lai Y, Hua ZC (2019) Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 39(1):BSR20180992. https://doi.org/10.1042/BSR20180992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zang G, Fang L, Chen L, Wang C (2018) Ameliorative effect of nicergoline on cognitive function through the PI3K/AKT signaling pathway in mouse models of Alzheimer’s disease. Mol Med Rep 17(5):7293–7300. https://doi.org/10.3892/mmr.2018.8786

    Article  CAS  PubMed  Google Scholar 

  111. Singh S, Singh TG (2020) Role of nuclear factor kappa B (NF-κB) signalling in neurodegenerative diseases: an mechanistic approach. Curr Neuropharmacol 18(10):918–935. https://doi.org/10.2174/1570159X18666200207120949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Miranda S, Opazo C, Larrondo LF, Muñoz FJ, Ruiz F, Leighton F, Inestrosa NC (2000) The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer’s disease. Prog Neurobiol 62(6):633–648. https://doi.org/10.1016/s0301-0082(00)00015-0

    Article  CAS  PubMed  Google Scholar 

  113. Jha NK, Jha SK, Kar R, Nand P, Swati K, Goswami VK (2019) Nuclear factor-kappa β as a therapeutic target for Alzheimer’s disease. J Neurochem 150(2):113–137. https://doi.org/10.1111/jnc.14687

    Article  CAS  PubMed  Google Scholar 

  114. Kaur U, Banerjee P, Bir A, Sinha M, Biswas A, Chakrabarti S (2015) Reactive oxygen species, redox signaling and neuroinflammation in Alzheimer’s disease: the NF-κB connection. Curr Top Med Chem 15(5):446–457. https://doi.org/10.2174/1568026615666150114160543

    Article  CAS  PubMed  Google Scholar 

  115. Singh S, Singh TG, Rehni AK (2020) An insight into molecular mechanisms and novel therapeutic approaches in epileptogenesis. CNS Neurol Disord Drug Targets 19(10):750–779. https://doi.org/10.2174/1871527319666200910153827

    Article  CAS  PubMed  Google Scholar 

  116. Jones SV, Kounatidis I (2017) Nuclear factor-kappa B and Alzheimer disease, unifying genetic and environmental risk factors from cell to humans. Front Immunol 8:1805. https://doi.org/10.3389/fimmu.2017.01805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Degterev A, Ofengeim D, Yuan J (2019) Targeting RIPK1 for the treatment of human diseases. Proc Natl Acad Sci USA 116(20):9714–9722. https://doi.org/10.1073/pnas.1901179116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Barrier L, Fauconneau B, Noël A, Ingrand S (2010) Ceramide and related-sphingolipid levels are not altered in disease-associated brain regions of APP and APP/PS1 mouse models of Alzheimer’s disease: relationship with the lack of neurodegeneration? Int J Alzheimers Dis 2011:920958. https://doi.org/10.4061/2011/920958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Michikawa M (2003) The role of cholesterol in pathogenesis of Alzheimer’s disease: dual metabolic interaction between amyloid beta-protein and cholesterol. Mol Neurobiol 27(1):1–12. https://doi.org/10.1385/MN:27:1:1

    Article  CAS  PubMed  Google Scholar 

  120. Ledesma MD, Dotti CG (2006) Amyloid excess in Alzheimer’s disease: what is cholesterol to be blamed for? FEBS Lett 580(23):5525–5532. https://doi.org/10.1016/j.febslet.2006.06.038

    Article  CAS  PubMed  Google Scholar 

  121. van Kruining D, Luo Q, van Echten-Deckert G, Mielke MM, Bowman A, Ellis S, Oliveira TG, Martinez-Martinez P (2020) Sphingolipids as prognostic biomarkers of neurodegeneration, neuroinflammation, and psychiatric diseases and their emerging role in lipidomic investigation methods. Adv Drug Deliv Rev 159:232–244. https://doi.org/10.1016/j.addr.2020.04.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Jazvinšćak Jembrek M, Hof PR, Šimić G (2015) Ceramides in Alzheimer’s disease: key mediators of neuronal apoptosis induced by oxidative stress and Aβ accumulation. Oxid Med Cell Longev 2015:346783. https://doi.org/10.1155/2015/346783

    Article  PubMed  PubMed Central  Google Scholar 

  123. Czubowicz K, Jęśko H, Wencel P, Lukiw WJ, Strosznajder RP (2019) The role of ceramide and sphingosine-1-phosphate in Alzheimer’s disease and other neurodegenerative disorders. Mol Neurobiol 56(8):5436–5455. https://doi.org/10.1007/s12035-018-1448-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Perez Ortiz JM, Swerdlow RH (2019) Mitochondrial dysfunction in Alzheimer’s disease: role in pathogenesis and novel therapeutic opportunities. Br J Pharmacol 176(18):3489–3507. https://doi.org/10.1111/bph.14585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Khan H, Gupta A, Singh TG, Kaur A (2021) Mechanistic insight on the role of leukotriene receptors in ischemic-reperfusion injury. Pharmacol Rep. https://doi.org/10.1007/s43440-021-00258-8

    Article  PubMed  Google Scholar 

  126. Hashimoto S, Saido TC (2018) Critical review: involvement of endoplasmic reticulum stress in the aetiology of Alzheimer’s disease. Open Biol 8(4):180024. https://doi.org/10.1098/rsob.180024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gerakis Y, Hetz C (2018) Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. FEBS J 285(6):995–1011. https://doi.org/10.1111/febs.14332

    Article  CAS  PubMed  Google Scholar 

  128. Li JQ, Yu JT, Jiang T, Tan L (2015) Endoplasmic reticulum dysfunction in Alzheimer’s disease. Mol Neurobiol 51(1):383–395. https://doi.org/10.1007/s12035-014-8695-8

    Article  CAS  PubMed  Google Scholar 

  129. Huang HC, Tang D, Lu SY, Jiang ZF (2015) Endoplasmic reticulum stress as a novel neuronal mediator in Alzheimer’s disease. Neurol Res 37(4):366–374. https://doi.org/10.1179/1743132814Y.0000000448

    Article  CAS  PubMed  Google Scholar 

  130. Rahman MM, Shrestha L, Gulshan MA (2020) ER stress signaling in Alzheimer’s disease: molecular mechanisms and therapeutic implications. Quality control of cellular protein in neurodegenerative disorders. IGI Global, Hershey, pp 180–211

    Chapter  Google Scholar 

  131. Plácido AI, Pereira CM, Duarte AI, Candeias E, Correia SC, Santos RX, Carvalho C, Cardoso S, Oliveira CR, Moreira PI (2014) The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: implications for Alzheimer’s disease. Biochim Biophys Acta 1842(9):1444–1453. https://doi.org/10.1016/j.bbadis.2014.05.003

    Article  CAS  PubMed  Google Scholar 

  132. Arrázola MS, Silva-Alvarez C, Inestrosa NC (2015) How the Wnt signaling pathway protects from neurodegeneration: the mitochondrial scenario. Front Cell Neurosci 9:166. https://doi.org/10.3389/fncel.2015.00166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Palomer E, Buechler J, Salinas PC (2019) Wnt signaling deregulation in the aging and Alzheimer’s brain. Front Cell Neurosci 13:227. https://doi.org/10.3389/fncel.2019.00227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. McLeod F, Salinas PC (2018) Wnt proteins as modulators of synaptic plasticity. Curr Opin Neurobiol 53:90–95. https://doi.org/10.1016/j.conb.2018.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Oliva CA, Vargas JY, Inestrosa NC (2013) Wnts in adult brain: from synaptic plasticity to cognitive deficiencies. Front Cell Neurosci 7:224. https://doi.org/10.3389/fncel.2013.00224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Rosso SB, Inestrosa NC (2013) WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 7:103. https://doi.org/10.3389/fncel.2013.00103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wan W, Xia S, Kalionis B, Liu L, Li Y (2014) The role of Wnt signaling in the development of Alzheimer’s disease: a potential therapeutic target? Biomed Res Int 2014:301575. https://doi.org/10.1155/2014/301575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Chen S, Guttridge DC, You Z, Zhang Z, Fribley A, Mayo MW, Kitajewski J, Wang CY (2001) Wnt-1 signaling inhibits apoptosis by activating beta-catenin/T cell factor-mediated transcription. J Cell Biol 152(1):87–96. https://doi.org/10.1083/jcb.152.1.87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Khan H, Tiwari P, Kaur A, Singh TG (2021) Sirtuin acetylation and deacetylation: a complex paradigm in neurodegenerative disease. Mol Neurobiol. https://doi.org/10.1007/s12035-021-02387-w

    Article  PubMed  PubMed Central  Google Scholar 

  140. Love S, Barber R, Wilcock GK (1999) Increased poly(ADP-ribosyl)ation of nuclear proteins in Alzheimer’s disease. Brain 122(Pt 2):247–253. https://doi.org/10.1093/brain/122.2.247

    Article  PubMed  Google Scholar 

  141. Thapa K, Khan H, Sharma U, Grewal AK, Singh TG (2021) Poly (ADP-ribose) polymerase-1 as a promising drug target for neurodegenerative diseases. Life Sci 267:118975. https://doi.org/10.1016/j.lfs.2020.118975

    Article  CAS  PubMed  Google Scholar 

  142. Czapski GA, Cieślik M, Wencel PL, Wójtowicz S, Strosznajder RP, Strosznajder JB (2018) Inhibition of poly(ADP-ribose) polymerase-1 alters expression of mitochondria-related genes in PC12 cells: relevance to mitochondrial homeostasis in neurodegenerative disorders. Biochim Biophys Acta Mol Cell Res 1865(2):281–288. https://doi.org/10.1016/j.bbamcr.2017.11.003

    Article  CAS  PubMed  Google Scholar 

  143. De Smet C, Loriot A, Boon T (2004) Promoter-dependent mechanism leading to selective hypomethylation within the 5’ region of gene MAGE-A1 in tumor cells. Mol Cell Biol 24(11):4781–4790. https://doi.org/10.1128/MCB.24.11.4781-4790.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang SC, Oelze B, Schumacher A (2008) Age-specific epigenetic drift in late-onset Alzheimer’s disease. PLoS One 3(7):e2698. https://doi.org/10.1371/journal.pone.0002698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wang J, Yu JT, Tan MS, Jiang T, Tan L (2013) Epigenetic mechanisms in Alzheimer’s disease: implications for pathogenesis and therapy. Ageing Res Rev 12(4):1024–1041. https://doi.org/10.1016/j.arr.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  146. Millan MJ (2014) The epigenetic dimension of Alzheimer’s disease: causal, consequence, or curiosity? Dialogues Clin Neurosci 16(3):373–393. https://doi.org/10.31887/DCNS.2014.16.3/mmillan

    Article  PubMed  PubMed Central  Google Scholar 

  147. Jackson-Grusby L, Beard C, Possemato R, Tudor M, Fambrough D, Csankovszki G, Dausman J, Lee P, Wilson C, Lander E, Jaenisch R (2001) Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat Genet 27(1):31–39. https://doi.org/10.1038/83730

    Article  CAS  PubMed  Google Scholar 

  148. Li P, Marshall L, Oh G, Jakubowski JL, Groot D, He Y, Wang T, Petronis A, Labrie V (2019) Epigenetic dysregulation of enhancers in neurons is associated with Alzheimer’s disease pathology and cognitive symptoms. Nat Commun 10(1):2246. https://doi.org/10.1038/s41467-019-10101-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lin L, Liu G, Yang L (2019) Crocin improves cognitive behavior in rats with Alzheimer’s disease by regulating endoplasmic reticulum stress and apoptosis. Biomed Res Int 2019:9454913. https://doi.org/10.1155/2019/9454913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Jin H, Wang M, Wang J, Cao H, Niu W, Du L (2020) Paeonol attenuates isoflurane anesthesia-induced hippocampal neurotoxicity via modulation of JNK/ERK/P38MAPK pathway and regulates histone acetylation in neonatal rat. J Matern Fetal Neonatal Med 33(1):81–91. https://doi.org/10.1080/14767058.2018.1487396

    Article  CAS  PubMed  Google Scholar 

  151. Chu Q, Zhu Y, Cao T, Zhang Y, Chang Z, Liu Y, Lu J, Zhang Y (2020) Studies on the neuroprotection of osthole on glutamate-induced apoptotic cells and an Alzheimer’s disease mouse model via modulation oxidative stress. Appl Biochem Biotechnol 190(2):634–644. https://doi.org/10.1007/s12010-019-03101-2

    Article  CAS  PubMed  Google Scholar 

  152. Kim YJ, Kim SH, Park Y, Park J, Lee JH, Kim BC, Song WK (2020) miR-16-5p is upregulated by amyloid β deposition in Alzheimer’s disease models and induces neuronal cell apoptosis through direct targeting and suppression of BCL-2. Exp Gerontol 136:110954. https://doi.org/10.1016/j.exger.2020.110954

    Article  CAS  PubMed  Google Scholar 

  153. Zhang R, Zheng Y, Hu F, Meng X, Lv B, Lao K, Gao X, Zhang X, Gou X (2020) Effect of (m)VD-hemopressin against Aβ1-42-induced oxidative stress and apoptosis in mouse hippocampal neurons. Peptides 124:170185. https://doi.org/10.1016/j.peptides.2019.170185

    Article  CAS  PubMed  Google Scholar 

  154. Ghamari F, Vaezi G, Khaksari M, Hojati V (2020) Nesfatin-1 ameliorate learning and memory deficit via inhibiting apoptosis and neuroinflammation following ethanol-induced neurotoxicity in early postnatal rats. Int. J. Pept. Res. Ther 26:2029

    Article  CAS  Google Scholar 

  155. Hu X, Song C, Fang M, Li C (2017) Simvastatin inhibits the apoptosis of hippocampal cells in a mouse model of Alzheimer’s disease. Exp Ther Med 15(2):1795–1802. https://doi.org/10.3892/etm.2017.5620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang Y, Cai B, Shao J, Wang TT, Cai RZ, Ma CJ, Han T, Du J (2016) Genistein suppresses the mitochondrial apoptotic pathway in hippocampal neurons in rats with Alzheimer’s disease. Neural Regen Res 11(7):1153–1158. https://doi.org/10.4103/1673-5374.187056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Zhang D, Wang Z, Sheng C, Peng W, Hui S, Gong W, Chen S (2015) Icariin prevents amyloid beta-induced apoptosis via the PI3K/Akt pathway in PC-12 cells. Evid Based Complement Alternat Med 2015:235265. https://doi.org/10.1155/2015/235265

    Article  PubMed  PubMed Central  Google Scholar 

  158. Gong Y, Chen J, Jin Y, Wang C, Zheng M, He L (2020) GW9508 ameliorates cognitive impairment via the cAMP-CREB and JNK pathways in APPswe/PS1dE9 mouse model of Alzheimer’s disease. Neuropharmacology 164:107899. https://doi.org/10.1016/j.neuropharm.2019.107899

    Article  CAS  PubMed  Google Scholar 

  159. Liu P, Cui L, Liu B, Liu W, Hayashi T, Mizuno K, Hattori S, Ushiki-Kaku Y, Onodera S, Ikejima T (2021) Silibinin ameliorates STZ-induced impairment of memory and learning by up- regulating insulin signaling pathway and attenuating apoptosis. Physiol Behav. https://doi.org/10.1016/j.physbeh.2019.112689

    Article  PubMed  Google Scholar 

  160. Szulwach KE, Jin P (2014) Integrating DNA methylation dynamics into a framework for understanding epigenetic codes. Bioessays 36(1):107–117. https://doi.org/10.1002/bies.201300090

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala, Punjab, India for providing the necessary facilities to carry out the research work.

Funding

Nil.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Conceived and designed the experiments: TGS. Analyzed the data: VKS, NG. Wrote the manuscript: VKS, SS. Visualization: VKS, TGS Editing of the Manuscript: VKS, SS, TGS Critically reviewed the article: TGS, SD. Supervision: TGS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Thakur Gurjeet Singh.

Ethics declarations

Conflict of interest

There are no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, V.K., Singh, T.G., Singh, S. et al. Apoptotic Pathways and Alzheimer’s Disease: Probing Therapeutic Potential. Neurochem Res 46, 3103–3122 (2021). https://doi.org/10.1007/s11064-021-03418-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03418-7

Keywords

Navigation