Skip to main content
Log in

Network structure, equilibrium and dynamics in a monopolistically competitive economy

  • Published:
NETNOMICS: Economic Research and Electronic Networking Aims and scope Submit manuscript

Abstract

Although network theory has been busy to emphasize the role of connection structures in shaping aggregate level phenomena of complex systems, there are only few attempts in economic modeling which try to build this dimension into the analysis. Macroeconomic models typically build on complete connectedness among economic actors (frictionless flow of information, perfect information on prices), thus these models typically oversee the possible effects of complex, incomplete network structures among economic agents on emergent macroeconomic phenomena. In this paper we try to fill this gap by incorporating possibly incomplete relationship structures between economic actors in a standard model of monopolistic competition and then analyze the effect of different network structures on the equilibrium and dynamic properties of the model. Analytical and simulation results of the model show that incomplete connectedness give rise to deadweight loss, shrinking output below the level observed in standard models with complete networks. Also, the dynamics of link formation has an effect on the steady state of the economy as well as on its response to shocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acemoglu, D., Carvalho, V.M., Ozdaglar, A., Tahbaz-Salehi, A. (2012). The network origins of aggregate fluctuations. Econometrica, 80(5), 1977–2016.

    Article  Google Scholar 

  2. Acemoglu, D., Ozdaglar, A., Tahbaz-Salehi, A. (2015). Networks and the macroeconomy: an empirical exploration, Bank of Finland Research Discussion Papers 25.

  3. Allen, F., & Gale, D. (2000). Financial contagion. Journal of Political Economy, 108(1), 1–33.

    Article  Google Scholar 

  4. Allen, F., Babus, A., Carletti, E. (2010). Financial connections and systemic risk, NBER Working Papers 16177.

  5. Angeletos, G.M., & Lian, C. (2016). Incomplete information in macroeconomics: Accommodating frictions in coordination. In Taylor, J.B., & Uhlig, H. (Eds.) Handbook of macroeconomics (pp. 1065–1240): North-Holland.

  6. Bala, V., & Goyal, S. (2000). A noncooperative model of network formation. Econometrica, 68(5), 1181–1230.

    Article  Google Scholar 

  7. Barabási, A.-L. (2016). Network science. Cambridge: Cambridge University Press.

    Google Scholar 

  8. Barabási, A.L. (2002). Linked: How everything is connected to everything else what it means for business, science and everyday life. New York: Perseus Publishing.

    Google Scholar 

  9. Barabási, A.L., Albert, R., Jeong, H. (2000). Scale-free characteristics of random networks: the topology of the world wide web. Physica A: Statistical Mechanics and its Applications, 281(1), 69–77.

    Article  Google Scholar 

  10. Barabási, A.L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.

    Article  Google Scholar 

  11. Barkman, S., & Heijdra, B. (Eds.). (2004). The monopolistic competition revolution in retrospect. Cambridge: Cambridge University Press.

  12. Barro, R.J. (1976). Rational expectations and the role of monetary policy. Journal of Monetary Economics, 2(1), 1–32.

    Article  Google Scholar 

  13. Bougheas, S., & Kirman, A. (2014). Complex financial networks and systemic risk: a review, CESifo Working Paper Series 4756.

  14. Caccioli, F., Barucca, P., Kobayashi, T.J. (2018). Network models of financial systemic risk. Journal of Computational Social Science, 1(1), 81–114.

    Article  Google Scholar 

  15. Csermely, P. (2005). A rejtett hálózatok ereje. Budapest: Vince Kiadó.

  16. De Grauwe, P. (2010). Top-down versus bottom-Up macroeconomics. CESifo Economic Studies, 56(4), 465–497.

    Article  Google Scholar 

  17. Dixit, A.K., & Stiglitz, J.E. (1977). Monopolistic competition and optimum product diversity. The American Economic Review, 67(3), 297–308.

    Google Scholar 

  18. Elliott, M., Golub, B., Jackson, M.O. (2014). Financial networks and contagion. American Economic Review, 104(10), 3115–3153.

    Article  Google Scholar 

  19. Erdős, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae, 6, 290–297.

    Google Scholar 

  20. Erdős, P., & Rényi, A. (1960). On the evolution of random graphs. Hungarian Academy of Sciences Institute of Mathematics, 5, 17–61.

    Google Scholar 

  21. Farmer, J.D., & Foley, D. (2009). The economy needs agent-based modelling. Nature, 460, 685–686.

    Article  Google Scholar 

  22. Farmer, J.D. (2013). Economics needs to treat the economy as a complex system. CRISIS publications working paper.

  23. Galí, J. (2008). Monetary policy, inflation, and the business cycle. An introduction to the new Keynesian framework. Princeton: Princeton University Press.

    Google Scholar 

  24. Granovetter, M. (1973). The strength of weak ties. American Journal of Sociology, 78(6), 1360–1380.

    Article  Google Scholar 

  25. Granovetter, M. (1983). The strength of weak ties: a network theory revisited. Sociological Theory, 1, 201–233.

    Article  Google Scholar 

  26. Gueriniac, M., Napoletano, M., Roventinica, A. (2018). No man is an island: the impact of heterogeneity and local interactions on macroeconomic dynamics. Economic Modelling, 68, 82–95.

    Article  Google Scholar 

  27. Hau, O., Mellár, T., Sebestyén, T. (2013). Láthatóvá tehető-e a láthatatlan kéz. Hungarian Economic Review (Közgazdasági Szemle), 60(9), 992–1024.

    Google Scholar 

  28. Jackson, M.O., & Wolinsky, A. (1996). A strategic model of social and economic networks. Journal of Economic Theory, 71(1), 44–74.

    Article  Google Scholar 

  29. Kónya, I. (2015). Fejezetek a haladó makroökonómiából. Az RBC-DGSE modellcsalád és a munkapiac makroökonómiája. University of Pécs Faculty of Business and Economics, Pécs.

  30. L’Huillier, J.P. (2012). Consumers’ imperfect information and price rigidities. EIEF Working Papers Series 1209.

  31. Lucas, R.E. Jr. (1972). Expectations and the neutrality of money. Journal of Economic Theory, 4(2), 103–124.

    Article  Google Scholar 

  32. Lucas, R.E. Jr. (1973). Some international evidence on output-inflation trade-offs. American Economic Review, 63(3), 326–334.

    Google Scholar 

  33. Lucas, R.E. Jr. (1975). An equilibrium model of the business cycle. Journal of Political Economy, 83(6), 1113–1144.

    Article  Google Scholar 

  34. Mankiw, N.G., & Reis, R. (2002). Sticky information versus sticky prices: a proposal to replace the new Keynesian Phillips curve. Quarterly Journal of Economics, 117(4), 1295–1328.

    Article  Google Scholar 

  35. Mankiw, N.G., & Reis, R. (2010). Imperfect information and aggregate supply. In Friedman, B.M., & Woodford, M. (Eds.) Handbook of monetary economics (pp. 183–229): North Holland.

  36. Stigler, G. (1961). The economics of information. Journal of Political Economy, 69(3), 213–225.

    Article  Google Scholar 

  37. Tesfatsion, L. (2006). Agent-based computational economics: a constructive approach to economic theory. In Tesfatsion, L, & Judd, K.L. (Eds.) Handbook of computational economics (pp. 831–880): North-Holland.

  38. Townsend, R. (1983). Forecasting the forecasts of others. Journal of Political Economy, 91(4), 546–588.

    Article  Google Scholar 

  39. Wims, G., Martens, D., De Backer, M. (2011). Network models of financial contagion: a definition and literature review. Working papers of the faculty of economics and business administration, Ghent University Faculty of Economics and Business Administration.

  40. Woodford, M. (2002). Imperfect common knowledge and the effects of monetary policy. In Aghion, P., Frydman, R., Stiglitz, J., Woodford, M. (Eds.) Knowledge, information, and expectations in modern macroeconomics: In honor of Edmund S. Phelps (pp. 25–58). Princeton: Princeton University Press.

Download references

Acknowledgements

The research presented in this paper was supported by the ÚNKP-17-4-III New National Excellence Program of the Hungarian Ministry of Human Capacities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Sebestyén.

Appendix

Appendix

Derivation of the demand function

In the model of monopolistic competition household i faces the following optimization problem:

$$\underset{x_{ij}}{\max} \quad X_{i}=\left( \sum\limits_{j = 1}^{F} s_{ij}{x_{ij}}^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}} $$
$$s.t. \quad I_{i}=\sum\limits_{j = 1}^{F}p_{j}x_{ij} $$

For the sake of simplicity and because the problem is static in time the time indices can be omitted. The objective of the household is to reach as much composite consumption as possible with the given budget.

The Lagrange-function and the first-order conditions of the problem are:

$$\begin{array}{@{}rcl@{}} L_{i}(x_{ij},\lambda_{i})&=&\left( \sum\limits_{j = 1}^{F} s_{ij}{x_{ij}}^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}}-\lambda_{i}\left( I_{i}-\sum\limits_{j = 1}^{F}p_{j}x_{ij}\right)\\ \frac{\partial L_{i}}{\partial x_{ij}}&=&\frac{\varepsilon}{\varepsilon-1}\left( \sum\limits_{j = 1}^{F} s_{ij}{x_{ij}}^{\frac{\varepsilon-1}{\varepsilon}}\right)^{\frac{\varepsilon}{\varepsilon-1}-1}\frac{\varepsilon-1}{\varepsilon}s_{ij}x_{ij}^{\frac{\varepsilon-1}{\varepsilon}-1}-\lambda_{i}p_{j}= 0 \quad j = 1,\ldots,F\\ \frac{\partial L_{i}}{\partial \lambda_{i}}&=&I_{i}-\sum\limits_{j = 1}^{F}p_{j}x_{ij}= 0 \end{array} $$

From the first-order conditions we get:

$$\begin{array}{@{}rcl@{}} s_{ij}x_{ij}^{-\frac{1}{\varepsilon}}X_{i}^{\frac{1}{\varepsilon}}&=&\lambda_{i}p_{j}\\ x_{ij}&=&s_{ij}^{\varepsilon}X_{i}\left( \lambda_{i}p_{j}\right)^{-\varepsilon} \end{array} $$

Take a firm k for which sik≠ 0 and take the ratio of the demands for the two products:

$$\begin{array}{@{}rcl@{}} \frac{x_{ij}}{x_{ik}}&=&\frac{s_{ij}^{\varepsilon}X_{i}\left( \lambda_{i}p_{j}\right)^{-\varepsilon}}{s_{ik}^{\varepsilon}X_{i}\left( \lambda_{i}p_{k}\right)^{-\varepsilon}}=\left( \frac{s_{ij}}{s_{ik}}\right)^{\varepsilon}\left( \frac{p_{j}}{p_{k}}\right)^{-\varepsilon}\\ x_{ij}&=&\left( \frac{s_{ij}}{s_{ik}}\right)^{\varepsilon}\left( \frac{p_{j}}{p_{k}}\right)^{-\varepsilon}x_{ik} \end{array} $$

Substitute this term into our initial condition:

$$I_{i}=\sum\limits_{j = 1}^{F}p_{j}x_{ij}=\sum\limits_{j = 1}^{F}p_{j}\left( \frac{s_{ij}}{s_{ik}}\right)^{\varepsilon}\left( \frac{p_{j}}{p_{k}}\right)^{-\varepsilon}x_{ik}=s_{ik}^{-\varepsilon}p_{k}^{\varepsilon}x_{ik}\sum\limits_{j = 1}^{F}s_{ij}^{\varepsilon}p_{j}^{1-\varepsilon} $$

Define the price index perceived by the i th household as follows:

$$P_{i}=\left( \sum\limits_{j = 1}^{F}s_{ij}^{\varepsilon}p_{j}^{1-\varepsilon}\right)^{\frac{1}{1-\varepsilon}} $$

Then the previous term for the income can be rewritten as follows:

$$I_{i}=s_{ik}^{-\varepsilon}p_{k}^{\varepsilon}x_{ik}P_{i}^{1-\varepsilon} $$

Expressing this in terms of xik we arrive to the demand functions for each product variety:

$$x_{ik}=s_{ik}^{\varepsilon}p_{k}^{-\varepsilon}I_{i}P_{i}^{\varepsilon-1} $$

the value of the objective function in optimum is:

$$\begin{array}{@{}rcl@{}} X_{i}&=&\left[\sum\limits_{j = 1}^{F} s_{ij}\left( s_{ij}^{\varepsilon}p_{j}^{-\varepsilon}I_{i}P_{i}^{\varepsilon-1}\right)^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}}=I_{i}P_{i}^{\varepsilon-1}\left( \sum\limits_{j = 1}^{F}s_{ij}^{\varepsilon}p_{j}^{1-\varepsilon}\right)^{\frac{\varepsilon}{\varepsilon-1}}\\ &=& I_{i}P_{i}^{\varepsilon-1}\left( P_{i}^{1-\varepsilon}\right)^{\frac{\varepsilon}{\varepsilon-1}}=\frac{I_{i}}{P_{i}} \end{array} $$

That is, if the consumer chooses optimally, then her disposable income can be expressed by means of her perceived price index and composite consumption:

$$I_{i}=P_{i}X_{i} $$

Using the latter expression, consumption of each product can be expressed with the price of the product, the composite consumption and the perceived price index:

$$x_{ik}=s_{ik}^{\varepsilon}X_{i}\left( \frac{p_{k}}{P_{i}}\right)^{-\varepsilon} $$

where

$$P_{i}=\left( \sum\limits_{j = 1}^{F}s_{ij}^{\varepsilon}p_{j}^{1-\varepsilon}\right)^{\frac{1}{1-\varepsilon}} $$

If connections are binary (that is, the intensity of the relations does not matter, only their existence), then the sij parameters can have the value 0 or 1 and the equations can be simplified as follows:

$$x_{ik}=s_{ik}X_{i}\left( \frac{p_{k}}{P_{i}}\right)^{-\varepsilon} $$

where

$$P_{i}=\left( \sum\limits_{j = 1}^{F}s_{ij}p_{j}^{1-\varepsilon}\right)^{\frac{1}{1-\varepsilon}} $$

The firm’s optimal price decision

The firm aims to reach the highest possible profit for a given demand (??) and production technology (??); that is, it maximizes the following object function subject to the constraints (??) and (??):

$$\underset{p_{j}}{\max} \quad{\Pi}_{j}=p_{j}y_{j}-TC_{j}(y_{j})=p_{j}^{1-\varepsilon}\sum\limits_{i = 1}^{H}s_{ij}^{\varepsilon}X_{i}{P_{i}}^{\varepsilon}-TC_{j}\left( p_{j}^{-\varepsilon}\sum\limits_{i = 1}^{H}s_{ij}^{\varepsilon}X_{i}{P_{i}}^{\varepsilon}\right) $$

where TCj(⋅) is the total cost function of firm j and we used the fact that in product market equilibrium the demand for the firm’s production equals its supply.

The first order condition of the optimization problem is the following:

$$\begin{array}{@{}rcl@{}} \frac{\partial {\Pi}_{j}}{\partial p_{j}}&=&(1-\varepsilon)p_{j}^{-\varepsilon}\sum\limits_{i = 1}^{H}s_{ij}^{\varepsilon}X_{i}{P_{i}}^{\varepsilon}-\frac{\partial TC_{j}}{\partial y_{j}}(-\varepsilon)p_{j}^{-\varepsilon-1}\sum\limits_{i = 1}^{H}s_{ij}^{\varepsilon}X_{i}{P_{i}}^{\varepsilon}\\ &=&p_{j}-\frac{\varepsilon}{\varepsilon-1}MC_{j}= 0 \end{array} $$

where we used that TCj/yj = MCj. According to this the optimal price of firm j is:

$$p_{j}=\frac{\varepsilon}{\varepsilon-1}MC_{j} $$

The firm’s total cost function is the following:

$$TC_{j}(y_{j})=WL_{j}=W\left( \frac{y_{j}}{A_{j}}\right)^{\frac{1}{1-\alpha}} $$

Deriving this with respect to yj leads to the marginal cost function:

$$MC_{j}=\frac{\partial TC_{j}}{\partial y_{j}}=\frac{W}{(1-\alpha)A_{j}^{\frac{1}{1-\alpha}}y_{j}^{\frac{-\alpha}{1-\alpha}}}=\frac{W}{MP_{L_{j}}} $$

Accordingly, the optimal price can be written as follows:

$$p_{j}=\frac{\varepsilon}{\varepsilon-1}MC_{j}=\frac{\varepsilon}{\varepsilon-1}\frac{W}{MP_{L_{j}}} $$

This equation holds for all firms in every period t.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebestyén, T., Longauer, D. Network structure, equilibrium and dynamics in a monopolistically competitive economy. Netnomics 19, 131–157 (2018). https://doi.org/10.1007/s11066-018-9129-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11066-018-9129-y

Keywords

Navigation