Skip to main content
Log in

The association between solar particle events, geomagnetic storms, and hospital admissions for myocardial infarction

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Eruptive activity of the Sun produces intensive fluxes of energetic particles and disturbances in geomagnetic field. It has been found that solar and geomagnetic activities affect the cardiovascular system. In this study, we investigated whether solar particle events (SPE) and geomagnetic storms (GS) affect risk of emergency hospitalization for first-time myocardial infarction (MI). The effect of environmental variables is analyzed separately for MI with and without elevation of ST segment in electrocardiogram. A case-crossover study design was used to analyze MI in 2,008 hospitalized patients at the Hospital of Kaunas University of Medicine, Lithuania, from January 1, 2004 to December 31, 2005. We evaluated the associations between SPE, GS, and daily number of emergency hospital admission for MI by Poisson regression, controlling for seasonal variation, weekdays, and meteorological factors. During days of SPE in conjunction with GS, the risk of hospital admissions for MI with ST elevation increased by 39 % (RR = 1.39; 95 % CI 1.02–1.91). Two days after SPE that going till GS, the risk of admission for MI without ST elevation increased by 54 % (RR = 1.54; 95 % CI 1.05–2.24). The major GS without increased proton flux with particle energies >10 MeV does not increase the risk of admission for MI without ST elevation. Only GS occurred after SPE increased the risk of admission for MI without ST elevation. These findings suggest that SPE going till GS or SPE in conjunction with GS affect on cardiovascular system. The environmental factors have different effects on the risk of myocardial infarction with and without ST elevation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Borovsky JE, Denton MH (2006) Differences between CME-driven storms and CIR-driven storms. J Geophys Res 111, A07S08. doi:10.1029/2005JA011447

  • Brasseur G, Solomon S (1986) Aeronomy of the Middle Atmosphere, vol 2. D. Reidel Publishing Company, Dordrecht

    Book  Google Scholar 

  • Burch JB, Reif JS, Yost MG (1999) Geomagnetic disturbances are associated with reduced nocturnal excretion of melatonin metabolite in humans. Neurosci Lett 266:209–212

    Article  Google Scholar 

  • Cherry NJ (2002) Schumann resonances, a plausible biophysical mechanism for the human health effects of solar/geomagnetic activity. Nat Hazards 26(3):279–331

    Article  Google Scholar 

  • Cornelissen G, Halberg F, Breus T, Syutkina EV, Baevsky R, Weydahl A et al (2002) Non-photic solar associations of heart rate variability and myocardial infarction. J Atmos Sol-Terr Phys 64:707–720

    Article  Google Scholar 

  • Dimitrova S, Stoilova I, Cholakov I (2004) Influence of local geomagnetic storms on arterial blood pressure. Βioelectromagnetics 25:408–414

    Article  Google Scholar 

  • Dimitrova S, Stoilova I, Georgieva K, Taseva T, Jordanova M, Maslarov D (2009) Solar and geomagnetic activity and acute myocardial infarction morbidity and mortality. Fundam Space Res, Suplement of Comptes Rend Acad Bulg Sci, pp 161–165

  • Dorman LI, Ptitsyna NG, Villoresi G, Kasinsky VV, Lyakhov NN, Tyasto MI (2008) Space storms as natural hazards. Adv Geosci 14:271–275

    Article  Google Scholar 

  • Ellison DC, Ramaty R (1985) Shock acceleration of electrons and ions in solar flares. Astrophys J 298:400–408

    Article  Google Scholar 

  • Fullekrug M, Fraser-Smith AC (1996) Further evidence for a global correlation of the Earth-ionosphere cavity resonances. Geophys Res Lett 23:2773–2776

    Article  Google Scholar 

  • Ghione S, Mezzasalma L, Del Seppia C, Papi F (1998) Do geomagnetic disturbances of solar origin affect arterial blood pressure? J Hum Hypertens 12(11):749–754

    Article  Google Scholar 

  • Gurfinkel’ IuI, Kuleshova VP, Oraevskiĭ VN (1998) Assessment of the effect of a geomagnetic storm on the frequency of appearance of acute cardiovascular pathology. Biofizika 43(4):654–658

    Google Scholar 

  • Gurfinkel’ YuI, Lyubimov VV, Oraevskii VN, Parfenova LM, Yur’ev AS (1995) Effect of geomagnetic disturbances on the capillary blood flow in patients with coronary heart disease. Biophysics 40(4):793–799

    Google Scholar 

  • Houck PD, Lethen JE, Riggs MW, Gantt DS, Dehmer GJ (2005) Relation of atmospheric pressure changes and the occurrences of acute myocardial infarction and stroke. Am J Cardiol 96(1):45–51

    Article  Google Scholar 

  • Ishida N, Kaneka M, Allada R (1999) Biological clocks. Proc Natl Acad Sci USA 96:8819–8820

    Article  Google Scholar 

  • Jackman CH, McPeters RD (2004) The Effect of solar proton events on ozone and other constituents. In: Solar variability and its effects on climate, vol 141, pp 305–319

  • Khabarova OV (2004) Investigation of the Tchizhevsky–Velhover effect. Biophysics 49(1):560–567

    Google Scholar 

  • Khabarova OV, Yermolaev YuI (2008) Solar wind parameters’ behavior before and after magnetic storms. J Atmos Sol Terr Phys 70:384–390

    Article  Google Scholar 

  • Kleimenova NG, Kozyreva OV, Rapoport SI (2007) Pc1 geomagnetic pulsations as a potential hazard of the myocardial infarction. J Atmos Sol Terr Phys 69(14):1759–1764

    Article  Google Scholar 

  • Kleimenova NG, Kozyreva OV, Breus TK, Rapoport SI (2008) Seasonal variation of magnetic storm influence on myocardial infarctions. In: proceedings of 31st annual seminar physics of auroral phenomena, Apatity, 26–29 Feb, 203–205

  • Kolodchencko VP (1969) The number of myocardial infarctions in Kiev and geomagnetic perturbations. Solnechni Danni, Leningrad, p 107 Russian

    Google Scholar 

  • Kozyreva OV, Kleimenova NG (2010) Variations in the ULF index of daytime geomagnetic pulsations during recurrent magnetic storms. Geomagn Aeron 50(6):770–780

    Article  Google Scholar 

  • Kriszbacher I, Bodis J, Csoboth I, Boncz I (2009) The occurence OFM acute myocardial infarction in relation to weather conditions. Int J Cardiol 135(1):136–138

    Article  Google Scholar 

  • Kuleshova VP, Pulinets SA, Kazanova ES, Kharchenko AM (2001) Biotropic effects of geomagnetic storms and their seasonal variations. Biofizika 46(5):930–934

    Google Scholar 

  • Mendoza B, Diaz-Sandoval R (2000) Relationship between solar activity and myocardial infarctions in Mexico City. Geofísica Int 39(1):53–56

    Google Scholar 

  • Mendoza B, Pena SS (2009) Solar activity and human health at middle and low geomagnetic latitudes in Central America. Adv Space Res 46:449–459

    Article  Google Scholar 

  • Miyoshi Y, Kataoka (2005) Ring current ions and radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions. Geophys Res Lett 32:L21105. doi:10.1029/2005GL024590

    Article  Google Scholar 

  • Novikova KF (1968) The effect of solar activity on the development of myocardial infarction and mortality resulting therefrom. [Russian]. Kardiologia 4:109–112

  • Oraevskii VN, Kuleshova VP, Gurfinkel’ IuF, Guseva AV, Rapoport SI (1998) Medico-biological effect of natural electromagnetic variations. Biofizika 43(5):844–888

    Google Scholar 

  • Palmer SJ, Rycroft MJ, Cermack M (2006) Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys 27:557–595

    Article  Google Scholar 

  • Partonen T, Haukka J, Viilo K, Hakko H, Pirkola S, Isometsa E, Lonnqvist J, Sarkioja T, Vaisanen E, Rasanen P (2004) Cyclic time patterns of death from suicide in northern Finland. J Affect Disord 78:11–19

    Article  Google Scholar 

  • Pikin DA, Gurginkel IuI, Oraevskii VN (1998) Effect of geomagnetic disturbances on the blood coagulation system in patients with ischemic heart disease and prospects for correction medication. Biofizika 43(4):617–622 (in Russian)

    Google Scholar 

  • Rodriquez-Taboada ER, Sierra-Figueredo P, Figueredo SS (2004) Geomagnetic activity related to acute myocardial infarctions: relationship in a reduced population and time interval. Geofisica Int 43(2):265–269

    Google Scholar 

  • Roldugin VK, Beloglazov MI (2008) Schumann resonance amplitude during the forbush effect. Geomagn Aeron 48(6):768–774

    Article  Google Scholar 

  • Roldugin VC, Maltsev YP, Vasiljev AN, Vashenyuk EV (1999) Changes of the first Schumann resonance frequency during relativistic solar proton precipitation in the 6 November 1997 event. Ann Geophysicae 17:1293–1297

    Article  Google Scholar 

  • Roldugin VC, Maltsev YP, Vasiljev AN Shvets AP, Nikolaenko AP (2003) Changes of the first Schumann resonance parameters during the solar proton event of July 14, 2000. J Geophys Res 108(A3) doi:10.1029/2002JA009495

  • Roldugin VC, Maltsev YP, Vasiljev AN, Schokotov AY, Belyajev GG (2004) Schumann resonance frequency increase during solar X-ray bursts. J Geophys Res 108(A1). doi:10.1029/2003JA010019

  • Sarna S, Romo M, Siltanen P (1977) Myocardial infarction and weather. Ann Clin Res 9(4):222–232

    Google Scholar 

  • Schlegel K (1995) EISCAT and the EISCAT data base—a tool for ionospheric modeling (E- and D-region). Adv Space Res 16(1):147–154

    Article  Google Scholar 

  • Schlegel K, Fullekrug M (1999) Schumann resonance parameter changes during high-energy particle precipitation. J Geophys Res 104(A5):10111–10118

    Article  Google Scholar 

  • Stoupel E (1999) Effect of geomagnetic activity on cardiovascular parameters. J Clin Basic Cardiol 2:34–40

    Google Scholar 

  • Stoupel E, Joshua H, Lahav J (1996) Human blood coagulation and geomagnetic activity. Eur J Int Med 7:217–220

    Google Scholar 

  • Stoupel E, Abramson J, Domarkiene S, Shimshoni M, Sulkes J (1997) Space proton flux and the temporal distribution of cardiovascular deaths. Int J Biometeorol 40:113–116

    Article  Google Scholar 

  • Stoupel E, Abramson E, Drungiliene D, Martinkėnas A, Sulkes J, Zhemaityte D (2002) Klaipėda cardiovascular emergency aid services correlate with 10 cosmo-physical parameters by time of occurence. J Clin Bas Card 5(3):225–227

    Google Scholar 

  • Stoupel E, Abramson E, Israelevich P, Sulkes J, Harell D (2007) Dynamics of serum C-reactive protein (CRP) level and cosmophysical activity. Eur J Int Med 18:124–128

    Article  Google Scholar 

  • Svensmark H, Bondo T, Svensmark J (2009) Cosmic ray decreases affect atmospheric aerosols and clouds. Geophys Res Let. doi:10.1029/2009GL038429

    Google Scholar 

  • Tycińska AM, Sawicki R, Mroczko B, Sobkowicz B, Musiał WJ, Dobrzycki S, Waszkiewicz E, Kozieradzka A, Szmitkowski M (2011) Admission B-type natriuretic peptide level predicts long-term survival in low risk ST-elevation myocardial infarction patients. Kardiol Pol 69(10):1008–1014

    Google Scholar 

  • Veretenenko SV, Thejll P (2004) Effects of energetic solar proton events on the cyclone development in the North Atlantic. J Atmos Sol-Terr Phys 66:393–405

    Article  Google Scholar 

  • Veretenenko SV, Tejll P (2008) Solar proton events and evolution of cyclones in the North Atlantic. Geomagn Aeron 48(4):518–528

    Article  Google Scholar 

  • Villoresi G, Breus TK, Iucci N, Dorman LI, Rapoport SI (1994) The influence of geophysical and social effects on the incidence of clinically important pathologies (Moscow 1979–1981). Phys Med 10:79–91

    Google Scholar 

  • Villoresi G, Breus TK, Dorman LI, Iuchi N, Rapoport SI (1995) Effect of interplanetary and geomagnetic disturbances on the increase in number of clinically serious medical pathologies (myocardial infarct and stroke). Biofizika 40(5):983–993

    Google Scholar 

  • Villoresi G, Ptitsyna NG, Tiasto MI, Iucci N (1998) Myocardial infarct and geomagnetic disturbances: analysis of data on morbidity and mortality. Biofizika 43(4):623–632 (in Russian)

    Google Scholar 

  • Watanabe Y, Corne′lissen G, Halberg F, Otsuka K, Ohkawa SI (2001) Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity. Biomed Pharmacother 55(Suppl 1):76–83

    Google Scholar 

  • Weydahl A, Sothern RB, Corne′lissen G, Wetterburg L (2001) Geomagnetic activity influences the melatonin secretion at 70 degrees N. Biomed Pharmocother 55(Suppl 1):57–62

    Google Scholar 

  • Williams ER (1992) The schumann resonance: a global tropical thermometer. Science 256:1184–1187

    Article  Google Scholar 

  • Zenchenko TA (2011) Solar wind density variations and the development of heliobiological effects during magnetic storms. Atmos Oceanic Phys 47(7):795–804

    Article  Google Scholar 

  • Zenchenko TA, Poskotinova LV, Rekhtina AG, Zaslavskaya RM (2010) Relation between microcirculation parameters and pc3 geomagnetic pulsations. Biofizika 55(4):734–739

    Google Scholar 

Download references

Acknowledgments

We acknowledge the contribution of the Kaunas University of Medicine Cardiological clinic involved in the registration of cardiovascular emergency admissions and formation of computer data basis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vencloviene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vencloviene, J., Babarskiene, R. & Slapikas, R. The association between solar particle events, geomagnetic storms, and hospital admissions for myocardial infarction. Nat Hazards 65, 1–12 (2013). https://doi.org/10.1007/s11069-012-0310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0310-6

Keywords

Navigation