Skip to main content
Log in

On the Hysteretic Bouc–Wen Model

Part I: Forced Limit Cycle Characterization

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the problem of characterizing analytically the limit cycle of the Bouc–Wen model. This question arises often in parameter identification issues where the input is chosen to be periodic and the experimentally obtained limit cycle is then used to determine the model parameters. However, it has never been proved analytically that a T-periodic input leads to a T-periodic output for the Bouc–Wen model. Furthermore, an analytical expression of the limit cycle is lacking. The objective of this paper is to fill this gap by proving that the response of the Bouc–Wen model to a class of T-periodic inputs of practical interest in identification procedures is T-periodic. We also provide an exact explicit description of the limit cycle which will be used in the companion paper to derive an identification method for the Bouc–Wen model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Visintin, A., Differential Models of Hysteresis, Springer-Verlag, Berlin, Heidelberg, 1994.

    Google Scholar 

  2. Duhem, P., ‘Die dauernden Aenderungen und die Thermodynamik’, I. Z. Phys. Chem. 22, 1897, 543–589.

    Google Scholar 

  3. Krasnosel’skii, M. A. and Pokrvskii, A. V., Systems with Hysteresis, Nauka, Moscow, 1983.

    Google Scholar 

  4. Preisach, F., ‘Uber die magnetische nachwirkung’, Zeit. Phys. 94, 1935, 277–302.

    Article  Google Scholar 

  5. Macki, J. W., Nistri, P., and Zecca, P., ‘Mathematical models for hysteresis’, SIAM Review 35(1), 1993, 94–123.

    Article  Google Scholar 

  6. Wen, Y. K., ‘Method of random vibration of hysteretic systems’, ASCE Journal of Engineering Mechanics 102(2), 1976, 249–263.

    Google Scholar 

  7. Smyth, A. W., Masri, S. F., Kosmatopoulos, E. B., Chassiakos, A. G., and Caughey, T. K., ‘Development of adaptive modeling techniques for non-linear hysteretic systems’, International Journal of Non-Linear Mechanics 37, 2002, 1435–1451.

    Article  Google Scholar 

  8. Low, T. and Guo, W., ‘Modelling of a three-layer piezoelectric bimorph beam with hysteresis’, IEEE Journal of Microelectromechanical Systems 4(4), 1995, 230–237.

    Article  Google Scholar 

  9. Spencer Jr., B. F., Dyke, S. J., Sain, M. K., and Carlson, J. D., ‘Phenomenological model for magnetorheological dampers’, ASCE Journal of Engineering Mechanics 123, 1997, 230–238.

    Google Scholar 

  10. Foliente, G. C., ‘Hysteresis modeling of wood joints and structural systems’, ASCE Journal of Structural Engineering 121(6), 1995, 1013–1022.

    Article  Google Scholar 

  11. Chen, B. M., Lee, T. H., Hang, C. C., Guo, Y., and Weerasooriya, S., ‘An H_∞ almost disturbance decoupling robust controller design for a piezoelectric bimorph actuator with hysteresis’, IEEE Transactions on Control Systems Technology 7(2), 1999, 160–174.

    Article  Google Scholar 

  12. Kyprianou, A., Worden, K., and Panet, M., ‘Identification of hysteretic systems using the differential evolution algorithm’, Journal of Sound and Vibration 248(2), 2001, 289–314.

    Article  Google Scholar 

  13. Ni, Y. Q., Ko, J. M., and Wong, C. W., ‘Identification of non-linear hysteretic isolators from periodic vibration tests’, Journal of Sound and Vibration 217(4), 1998, 737–756.

    Article  Google Scholar 

  14. Wiggins, S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, 1990.

  15. Filippov, A. F., Differential Equations with Discontinuous Righthand Sides, Kluwer Academic Publishers, 1988.

  16. Ikhouane, F., Mañosa, V., and Rodellar, J., ‘Bounded and dissipative solutions of the Bouc–Wen model for hysteretic structural systems’, in Proceedings of the American Control Conference, Boston, 2004.

  17. Sutherland, W. A., Introduction to Metric and Topological Spaces, Oxford Science Publications, 1975.

  18. Mayergoyz, I., Mathematical Models of Hysteresis and Their Applications, Elsevier Series in Electromagnetism, 2003.

  19. Bouc, R., ‘Forced vibrations of mechanical systems with hysteresis’, in Proceedings of the Fourth Conference on Non-Linear Oscillations, 1967, p. 315.

  20. Brailovski, V., Prokoshkin, S., Terriault, P., and Trochu, F., ‘Shape memory alloys: Fundamentals’, in Modeling and Applications, Université du Québec, École de technologie supérieure, National Library of Canada, 2003.

  21. Su, C.-Y., Stepanenko, Y., Svoboda, J., and Leung, T. P., ‘Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis’, IEEE Transactions on Automatic Control 45(12), 2000, 2427–2432.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fayçal Ikhouane.

Additional information

Contributed by Prof. F. Casciati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikhouane, F., Rodellar, J. On the Hysteretic Bouc–Wen Model. Nonlinear Dyn 42, 63–78 (2005). https://doi.org/10.1007/s11071-005-0069-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-005-0069-3

Keywords

Navigation