Skip to main content
Log in

Order reduction of retarded nonlinear systems – the method of multiple scales versus center-manifold reduction

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We compare two approaches for determining the normal forms of Hopf bifurcations in retarded nonlinear dynamical systems; namely, the method of multiple scales and a combination of the method of normal forms and the center-manifold theorem. To describe and compare the methods without getting involved in the algebra, we consider three examples: a scalar equation, a single-degree-of-freedom system, and a three-neuron model. The method of multiple scales is directly applied to the retarded differential equations. In contrast, in the second approach, one needs to represent the retarded equations as operator differential equations, decompose the solution space of their linearized form into stable and center subspaces, determine the adjoint of the operator equations, calculate the center manifold, carry out details of the projection using the adjoint of the center subspace, and finally calculate the normal form on the center manifold. We refer to the second approach as center-manifold reduction. Finally, we consider a problem in which the retarded term appears as an acceleration and treat it using the method of multiple scales only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van der Heiden, U.: Delays in physiological systems. J. Math. Biol. 8, 345ȓ364 (1979)

    MATH  MathSciNet  Google Scholar 

  2. MacDonald, N.: Biological Delay Systems: Linear Stability Theory. Cambridge University Press, Cambridge, UK (1989)

    MATH  Google Scholar 

  3. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic, Boston, MA (1993)

    MATH  Google Scholar 

  4. Tlusty, J.: Machine dynamics. In: Handbook of High-Speed Machine Technology, King, R.I. (ed.), Chapman and Hall, New York, pp. 48ȓ153 (1985)

    Google Scholar 

  5. Henry, R.J., Masoud, Z.N., Nayfeh, A.H., Mook, D.T.: Cargo pendulation reduction on ship-mounted cranes via boom-luff angle actuation. J. Vib. Control 7, 1253ȓ1264 (2001)

    Article  MATH  Google Scholar 

  6. Masoud, Z.N., Nayfeh, A.H.: Sway reduction on container cranes using delayed feedback controller. Nonlinear Dyn. 34, 347ȓ358 (2003)

    Article  MATH  Google Scholar 

  7. Scott, A.C.: Neurophysics. Wiley-Interscience, New York (1977)

    Google Scholar 

  8. Kleinfield, D., Sompolinsky, H.: Associate neural network model for the generation of temporal patterns. Biophys. J. 54, 1039ȓ1051 (1988)

    Article  Google Scholar 

  9. Chow, C., Mallet-Paret, J.: Integral averaging and bifurcation. J. Differ. Equ. 26, 112ȓ159 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. Claeyssen, J.R.: The integral-averaging bifurcation method and the general one-delay equation. J. Math. Anal. Appl. 78, 429ȓ439 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ioos, G., Joseph, D.D.: Elementary Stability and Bifurcation Theory. Springer-Verlag, New York (1980)

    Google Scholar 

  12. Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer-Verlag, New York (1993)

    MATH  Google Scholar 

  13. Nayfeh, A.H., Chin, C.M., Pratt, J.: Perturbation methods in nonlinear dynamics. Applications to machining dynamics. J. Manuf. Sci. Eng. 119, 485ȓ493 (1997)

    Google Scholar 

  14. Nayfeh, N.A.: Local and Global Stability and Dynamics of a Class of Nonlinear Time-Delayed One-Degree-of-Freedom Systems. Ph.D. Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA (2006)

  15. Nayfeh, A.H.: Perturbation Methods. Wiley-Interscience, New York (1973)

    MATH  Google Scholar 

  16. Nayfeh, A.H.: Introduction to Perturbation Techniques. Wiley-Interscience, New York (1981)

    MATH  Google Scholar 

  17. Hassard, B.D., Kazarinoff, N.D., Wan, Y.H.: Theory and Applications of Hopf Bifurcations. Cambridge University Press, Cambridge, UK (1981)

    Google Scholar 

  18. Liao, X., Wong, K.W., Wu, Z.: Bifurcation analysis on a two-neuron system with distributed delays. Physica D 149, 123ȓ141 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nayfeh, A.H.: Method of Normal Forms. Wiley-Interscience, New York (1993)

    Google Scholar 

  20. Hale, J.K.: Theory of Functional Differential Equations, Applied Mathematical Sciences, vol. 3. Springer-Verlag, New York (1977)

    Google Scholar 

  21. Campbell, S.A., Bélair, J., Ohira, T., Milton, J.: Limit cycles, tori and complex dynamics in a second order differential equation with delayed negative feedback. J. Dyn. Differ. Equ. 7, 213ȓ236 (1995)

    Article  MATH  Google Scholar 

  22. Hanna, N.H., Tobias, S.A.: A theory of nonlinear regenerative chatter. ASME J. Eng. Ind. 96, 247ȓ255 (1974)

    Google Scholar 

  23. Kalmár-Nagy, T., Stépán, G., Moon, F.C.: Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations. Nonlinear Dyn. 26, 121ȓ142 (2001)

    Article  MATH  Google Scholar 

  24. Gilsinn, D.: Estimating critical Hopf bifurcation parameters for a second-order delay differential equation with application to machine tool. Nonlinear Dyn. 30, 103ȓ154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  25. Hopfield, J.: Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. USA 81, 3088ȓ3092 (1984)

    Article  Google Scholar 

  26. Babcock, K.L., Westervelt, R.M.: Dynamics of simple electronic neural networks. Physica D 28, 305ȓ316 (1987)

    Article  MathSciNet  Google Scholar 

  27. Gopalsamy, K., Leung, I.: Delay induced periodicity in a neural network of excitation and inhibition. Physica D 89, 395ȓ426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  28. Liao, X., Guo, S., Li, C.: Stability and bifurcation analysis in Tri-neuron model with time delay. Nonlinear Dyn., DOI: 10.1007/s11071-006-9137-6 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali H. Nayfeh.

Additional information

Communicated by G. Rega

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nayfeh, A.H. Order reduction of retarded nonlinear systems – the method of multiple scales versus center-manifold reduction. Nonlinear Dyn 51, 483–500 (2008). https://doi.org/10.1007/s11071-007-9237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9237-y

Keywords

Navigation