Skip to main content
Log in

Transitions in a Duffing oscillator excited by random noise

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We investigate a Duffing oscillator driven by random noise which is assumed to be a harmonic function of the Wiener process. We show that the correlation time of the noise has a strong effect on the form of the response stationary probability density functions. It represents the so-called reentrance transitions, i.e. for the same noise intensity the probability density function has an identical modality for both the small and the large correlation time but a different modality for the moderate correlation time. The transitions are observed for both the single-well and twin-well potential case. A new approach is used to study the response probability density function. It is based on analysis of hyperbolic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, New York (1979)

    MATH  Google Scholar 

  2. Moon, F.: Chaotic Vibrations. Wiley, New York (1992)

    Google Scholar 

  3. Lin, Y.K., Cai, G.K.: Probabilistic Structural Dynamics: Advanced Theory and Applications. McGraw-Hill, New York (1995)

    Google Scholar 

  4. Gardiner, C.W.: Handbook of Stochastic Methods for Physics, Chemistry and Natural Sciences. Springer-Verlag, Berlin (1985)

    Google Scholar 

  5. Dimentberg, M., Cai, G.Q., Lin, Y.K.: Application of quasi-conservative averaging to a non-linear system under non-white excitation. Int. J. Non-Linear Mech. 30, 677–685 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Di Paola, M., Ricciardi, G., Vasta, M.: A method for probabilistic analysis of nonlinear systems. Probabilistic Eng. Mech. 10, 1–10 (1995)

    Article  Google Scholar 

  7. Wojtkiewicz, S.F., Spencer, B.F., Bergman, L.A.: On the cumulant-neglect closure method in stochastic dynamics. Int. J. Non-Linear Mech. 31, 657–684 (1996)

    Article  MATH  Google Scholar 

  8. Sobczyk, K., Trebicki, J.: Approximate probability distributions for stochastic systems: maximum entropy method. Comput. Methods Appl. Mech. Eng. 168, 91–111 (1998)

    Article  MathSciNet  Google Scholar 

  9. Bontempi, F., Faravelli, L.: Lagranganian/Eulerian description of the dynamical systems. ASCE J. Eng. Mech. 124, 901–911 (1998)

    Article  Google Scholar 

  10. Landa, P.S., McClintock, P.V.E.: Changes in the dynamical behavior of nonlinear systems induced by noise. Phys. Rep. 323, 1–80 (2000)

    Article  MathSciNet  Google Scholar 

  11. von Wagner, U., Wedig, W.V.: On the calculation of stationary solutions of multi-dimensional Fokker-Planck equations by orthogonal functions. Nonlinear Dyn. 21, 289–306 (2000)

    Article  MATH  Google Scholar 

  12. Naess, A., Moe, V.: Efficient path integration methods for nonlinear dynamic systems. Probabilistic Eng. Mech. 15, 221–231 (2000)

    Article  Google Scholar 

  13. Pradlwarter, H.J.: Non-linear stochastic response distributions by local stochastic linearization. Int. J. Non-Linear Mech. 36, 1135–1151 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Haiwu, R., Wu, X., Guang, F., Tong, F.: Response of a Duffing oscillator to combined deterministic harmonic and random excitations. J. Sound Vib. 242, 362–368 (2001)

    Article  Google Scholar 

  15. Cai, G.K., Lin, Y.K.: Random vibration of strongly nonlinear systems. Nonlinear Dyn. 24, 3–15 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Crandall, S.H.: On using non-Gaussian distributions to perform statistical linearization. Int. J. Non-Linear Mech. 39, 1395–1406 (2004)

    Article  MATH  Google Scholar 

  17. Caughey, T.K.: Nonlinear theory of random vibration. In: Yin, C.S. (ed.) Advances in Applied Mechanics, Vol. 11, pp. 209–253. Academic Press, New York (1971)

    Google Scholar 

  18. Castro, F., Sanchez, A.D., Wio, H.S.: Reentrance phenomena in noise induced transitions. Phys. Rev. Lett. 75, 1691–1694 (1995)

    Article  Google Scholar 

  19. Wio, H.S., Toral, R.: Effect of non-Gaussian noise sources in a noise-induced transition. Physica D 193, 161–168 (2004)

    Article  MATH  Google Scholar 

  20. Dimentberg, M.F.: Stability and subcritical dynamics of structures with spatially disordered travelling parametric excitation. Probabilistic Eng. Mech. 7, 131–134 (1992)

    Article  Google Scholar 

  21. Wedig, W.V.: Iterative schemes for stability problems with non-singular Fokker-Planck equations. Int. J. Non-Linear Mech. 31, 707–715 (1996)

    Article  MATH  Google Scholar 

  22. Pandey, M.D., Ariaratnam, S.T.: Stability analysis of wind-induced torsional motion of slender bridges. Struct. Safety 20, 379–389 (1998)

    Article  Google Scholar 

  23. Haiwu, R., Wei, X., Xiangdon, W., Guang, M., Tong, F.: Response statistics of two-degree-of freedom non-linear system to narrow-band random excitation. Int. J. Non-Linear Mech. 37, 1017–1028 (2002)

    Article  MATH  Google Scholar 

  24. Huang, Z.L., Zhu, W.Q.: Stochastic averaging of quasi-integrable Hamiltonian systems under bounded noise excitations. Probabilistic Eng. Mech. 19, 219–228 (2004)

    Article  Google Scholar 

  25. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  26. Cameron, R.H., Martin, W.T.: Transformations of Wiener integrals under translations. Annals Math. 45, 386–396 (1944)

    Article  MathSciNet  Google Scholar 

  27. Yeh, J.: Stochastic Processes and the Wiener Integral. M. Dekker, New York (1973)

    MATH  Google Scholar 

  28. Bobryk, R.V., Stettner, L.: A closure method for randomly perturbed linear systems. Demonstratio Mathematica 34, 415–424 (2001)

    MATH  MathSciNet  Google Scholar 

  29. Bobryk, R.V., Stettner, L.: Moment stability for linear systems with a random parametric excitation. Syst. Control Lett. 54, 781–786 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  30. Bobryk, R.V., Chrzeszczyk, A.: Transitions induced by bounded noise. Physica A 358, 263–272 (2005)

    Article  Google Scholar 

  31. Vishik, M.I., Lyusternik, L.A.: Regular degeneration and boundary layer for linear differential equations with small parameter. Uspekhi Matematicheskikh Nauk 12, 3–122 (1957) (in Russian)

    MATH  MathSciNet  Google Scholar 

  32. Trenogin, V.A.: The development and application of the asymptotic method of Lyusternik and Vishik. Russian Math. Surv. 25, 119–156 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  33. Vasil'eva, A.B., Butuzov, V.F., Kalachev, L.V.: The Boundary Function Method for Singular Perturbation Problems. SIAM, Philadelphia (1995)

    MATH  Google Scholar 

  34. Bobryk, R.V.: Closure method and asymptotic expansions for linear stochastic systems. J. Math. Anal. Appl. 329, 703–711 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Bobryk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobryk, R.V., Chrzeszczyk, A. Transitions in a Duffing oscillator excited by random noise. Nonlinear Dyn 51, 541–550 (2008). https://doi.org/10.1007/s11071-007-9243-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-007-9243-0

Keywords

Navigation